Primary cosmic-ray elemental spectra have been measured with the
balloon-borne Cosmic Ray Energetics And Mass (CREAM) experiment since 2004. The
third CREAM payload (CREAM-III) flew for 29 days during the 2007-2008 Antarctic
season. Energies of incident particles above 1 TeV are measured with a
calorimeter. Individual elements are clearly separated with a charge resolution
of ~0.12 e (in charge units) and ~0.14 e for protons and helium nuclei,
respectively, using two layers of silicon charge detectors. The measured proton
and helium energy spectra at the top of the atmosphere are harder than other
existing measurements at a few tens of GeV. The relative abundance of protons
to helium nuclei is 9.53+-0.03 for the range of 1 TeV/n to 63 TeV/n. The ratio
is considerably smaller than other measurements at a few tens of GeV/n. The
spectra become softer above ~20 TeV. However, our statistical uncertainties are
large at these energies and more data are needed