39 research outputs found

    Current Trends in Gelatin-Based Drug Delivery Systems

    Get PDF
    Gelatin is a highly versatile natural polymer, which is widely used in healthcare-related sectors due to its advantageous properties, such as biocompatibility, biodegradability, low-cost, and the availability of exposed chemical groups. In the biomedical field, gelatin is used also as a biomaterial for the development of drug delivery systems (DDSs) due to its applicability to several synthesis techniques. In this review, after a brief overview of its chemical and physical properties, the focus is placed on the commonly used techniques for the development of gelatin-based micro- or nano-sized DDSs. We highlight the potential of gelatin as a carrier of many types of bioactive compounds and its ability to tune and control select drugs' release kinetics. The desolvation, nanoprecipitation, coacervation, emulsion, electrospray, and spray drying techniques are described from a methodological and mechanistic point of view, with a careful analysis of the effects of the main variable parameters on the DDSs' properties. Lastly, the outcomes of preclinical and clinical studies involving gelatin-based DDSs are thoroughly discussed

    Mimicking the Hierarchical Organization of Natural Collagen: Toward the Development of Ideal Scaffolding Material for Tissue Regeneration

    Get PDF
    Biological materials found in living organisms, many of which are proteins, feature a complex hierarchical organization. Type I collagen, a fibrous structural protein ubiquitous in the mammalian body, provides a striking example of such a hierarchical material, with peculiar architectural features ranging from the amino acid sequence at the nanoscale (primary structure) up to the assembly of fibrils (quaternary structure) and fibers, with lengths of the order of microns. Collagen plays a dominant role in maintaining the biological and structural integrity of various tissues and organs, such as bone, skin, tendons, blood vessels, and cartilage. Thus, "artificial" collagen-based fibrous assemblies, endowed with appropriate structural properties, represent ideal substrates for the development of devices for tissue engineering applications. In recent years, with the ultimate goal of developing three-dimensional scaffolds with optimal bioactivity able to promote both regeneration and functional recovery of a damaged tissue, numerous studies focused on the capability to finely modulate the scaffold architecture at the microscale and the nanoscale in order to closely mimic the hierarchical features of the extracellular matrix and, in particular, the natural patterning of collagen. All of these studies clearly show that the accurate characterization of the collagen structure at the submolecular and supramolecular levels is pivotal to the understanding of the relationships between the nanostructural/microstructural properties of the fabricated scaffold and its macroscopic performance. Several studies also demonstrate that the selected processing, including any crosslinking and/or sterilization treatments, can strongly affect the architecture of collagen at various length scales. The aim of this review is to highlight the most recent findings on the development of collagen-based scaffolds with optimized properties for tissue engineering. The optimization of the scaffolds is particularly related to the modulation of the collagen architecture, which, in turn, impacts on the achieved bioactivity

    Effect of Cultivation Parameters on Fermentation and Hydrogen Production in the Phylum

    Get PDF
    The phylum is composed of a single class (), 4 orders (), 5 families (), and 13 genera. They have been isolated from extremely hot environments whose characteristics are reflected in the metabolic and phenotypic properties of the species. The metabolic versatility of members leads to a pool of high value-added products with application potentials in many industry fields. The low risk of contamination associated with their extreme culture conditions has made most species of the phylum attractive candidates in biotechnological processes. Almost all members of the phylum, especially those in the order , can produce bio-hydrogen from a variety of simple and complex sugars with yields close to the theoretical Thauer limit of 4 mol H/mol consumed glucose. Acetate, lactate, and L-alanine are the major organic end products. Thermotagae fermentation processes are influenced by various factors, such as hydrogen partial pressure, agitation, gas sparging, culture/headspace ratio, inoculum, pH, temperature, nitrogen sources, sulfur sources, inorganic compounds, metal ions, etc. Optimization of these parameters will help to fully unleash the biotechnological potentials of and promote their applications in industry. This article gives an overview of how these operational parameters could impact fermentation in terms of sugar consumption, hydrogen yields, and organic acids production

    Efficacy Evaluation of Cu- and Ag-Based Antibacterial Treatments on Polypropylene Fabric and Comparison with Commercial Products

    Get PDF
    Filter masks are disposable devices intended to be worn in order to reduce exposure to potentially harmful foreign agents of 0.1–10.0 microns. However, to perform their function correctly, these devices should be replaced after a few hours of use. Because of this, billions of non-biodegradable face masks are globally discarded every month (3 million/minute). The frequent renewal of masks, together with the strong environmental impact of non-biodegradable plastic-based mask materials, highlights the need to find a solution to this emerging ecological problem. One way to reduce the environmental impact of masks, decrease their turnover, and, at the same time, increase their safety level is to make them able to inhibit pathogen proliferation and vitality by adding antibacterial materials such as silver, copper, zinc, and graphene. Among these, silver and copper are the most widely used. In this study, with the aim of improving commercial devices’ efficacy and eco-sustainability, Ag-based and Cu-based antibacterial treatments were performed and characterized from morphological, compositional, chemical–physical, and microbiological points of view over time and compared with the antibacterial treatments of selected commercial products. The results demonstrated the good distribution of silver and copper particles onto the surface of the masks, along with almost 100% antibacterial capabilities of the coatings against both Gram-positive and Gram-negative bacteria, which were still confirmed even after several washing cycles, thus indicating the good potential of the developed prototypes for mask application

    Age-Related Properties of Aquaponics-Derived Tilapia Skin (Oreochromis niloticus): A Structural and Compositional Study

    Get PDF
    In the last two decades, fisheries and fish industries by-products have started to be recovered for the extraction of type I collagen because of issues related to the extraction of traditional mammalian tissues. In this work, special attention has been paid to by-products from fish bred in aquaponic plants. The valorization of aquaponic fish wastes as sources of biopolymers would make the derived materials eco-friendlier and attractive in terms of profitability and cost effectiveness. Among fish species, Nile Tilapia is the second-most farmed species in the world and its skin is commonly chosen as a collagen extraction source. However, to the best of our knowledge, no studies have been carried out to investigate, in depth, the age-related differences in fish skin with the final aim of selecting the most advantageous fish size for collagen extraction. In this work, the impact of age on the structural and compositional properties of Tilapia skin was evaluated with the aim of selecting the condition that best lends itself to the extraction of type I collagen for biomedical applications, based on the known fact that the properties of the original tissue have a significant impact on those of the final product. Performed analysis showed statistically significant age-related differences. In particular, an increase in skin thickness (+110 µm) and of wavy-like collagen fiber bundle diameter (+3 µm) besides their organization variation was observed with age. Additionally, a preferred collagen molecule orientation along two specific directions was revealed, with a higher fiber orientation degree according to age. Thermal analysis registered a shift of the endothermic peak (+1.7 °C) and an increase in the enthalpy (+3.3 J/g), while mechanical properties were found to be anisotropic, with an age-dependent brittle behavior. Water (+13%) and ash (+0.6%) contents were found to be directly proportional with age, as opposed to protein (-8%) and lipid (-10%) contents. The amino acid composition revealed a decrease in the valine, leucine, isoleucine, and threonine content and an increase in proline and hydroxyproline. Lastly, fatty acids C14:0, C15:0, C16:1, C18:2n6c, C18:3n6, C18:0, C20:3n3, and C23:0 were revealed to be upregulated, while C18:1n9c was downregulated with age

    How future surgery will benefit from SARS-COV-2-related measures: a SPIGC survey conveying the perspective of Italian surgeons

    Get PDF
    COVID-19 negatively affected surgical activity, but the potential benefits resulting from adopted measures remain unclear. The aim of this study was to evaluate the change in surgical activity and potential benefit from COVID-19 measures in perspective of Italian surgeons on behalf of SPIGC. A nationwide online survey on surgical practice before, during, and after COVID-19 pandemic was conducted in March-April 2022 (NCT:05323851). Effects of COVID-19 hospital-related measures on surgical patients' management and personal professional development across surgical specialties were explored. Data on demographics, pre-operative/peri-operative/post-operative management, and professional development were collected. Outcomes were matched with the corresponding volume. Four hundred and seventy-three respondents were included in final analysis across 14 surgical specialties. Since SARS-CoV-2 pandemic, application of telematic consultations (4.1% vs. 21.6%; p < 0.0001) and diagnostic evaluations (16.4% vs. 42.2%; p < 0.0001) increased. Elective surgical activities significantly reduced and surgeons opted more frequently for conservative management with a possible indication for elective (26.3% vs. 35.7%; p < 0.0001) or urgent (20.4% vs. 38.5%; p < 0.0001) surgery. All new COVID-related measures are perceived to be maintained in the future. Surgeons' personal education online increased from 12.6% (pre-COVID) to 86.6% (post-COVID; p < 0.0001). Online educational activities are considered a beneficial effect from COVID pandemic (56.4%). COVID-19 had a great impact on surgical specialties, with significant reduction of operation volume. However, some forced changes turned out to be benefits. Isolation measures pushed the use of telemedicine and telemetric devices for outpatient practice and favored communication for educational purposes and surgeon-patient/family communication. From the Italian surgeons' perspective, COVID-related measures will continue to influence future surgical clinical practice

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Abstract Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    An Overview of the Use of Equine Collagen as Emerging Material for Biomedical Applications

    No full text
    Type I collagen has always aroused great interest in the field of life-science and bioengineering, thanks to its favorable structural properties and bioactivity. For this reason, in the last five decades it has been widely studied and employed as biomaterial for the manufacture of implantable medical devices. Commonly used sources of collagen are represented by bovine and swine but their applications are limited because of the zoonosis transmission risks, the immune response and the religious constrains. Thus, type-I collagen isolated from horse tendon has recently gained increasing interest as an attractive alternative, so that, although bovine and porcine derived collagens still remain the most common ones, more and more companies started to bring to market a various range of equine collagen-based products. In this context, this work aims to overview the properties of equine collagen making it particularly appealing in medicine, cosmetics and pharmaceuticals, as well as its main biomedical applications and the currently approved equine collagen-based medical devices, focusing on experimental studies and clinical trials of the last 15 years. To the best of our knowledge, this is the first review focusing on the use of equine collagen, as well as on equine collagen-based marketed products for healthcare

    An Update on the Clinical Efficacy and Safety of Collagen Injectables for Aesthetic and Regenerative Medicine Applications

    No full text
    Soft tissues diseases significantly affect patients quality of life and usually require targeted, costly and sometimes constant interventions. With the average lifetime increase, a proportional increase of age-related soft tissues diseases has been witnessed. Due to this, the last two decades have seen a tremendous demand for minimally invasive one-step resolutive procedures. Intensive scientific and industrial research has led to the recognition of injectable formulations as a new advantageous approach in the management of complex diseases that are challenging to treat with conventional strategies. Among them, collagen-based products are revealed to be one of the most promising among bioactive biomaterials-based formulations. Collagen is the most abundant structural protein of vertebrate connective tissues and, because of its structural and non-structural role, is one of the most widely used multifunctional biomaterials in the health-related sectors, including medical care and cosmetics. Indeed, collagen-based formulations are historically considered as the “gold standard” and from 1981 have been paving the way for the development of a new generation of fillers. A huge number of collagen-based injectable products have been approved worldwide for clinical use and have routinely been introduced in many clinical settings for both aesthetic and regenerative surgery. In this context, this review article aims to be an update on the clinical outcomes of approved collagen-based injectables for both aesthetic and regenerative medicine of the last 20 years with an in-depth focus on their safety and effectiveness for the treatment of diseases of the integumental, gastrointestinal, musculoskeletal, and urogenital apparatus

    Influence of Nanofiber Orientation on Morphological and Mechanical Properties of Electrospun Chitosan Mats

    No full text
    This work explored the use of chitosan (Cs) and poly(ethylene oxide) (PEO) blends for the fabrication of electrospun fiber-orientated meshes potentially suitable for engineering fiber-reinforced soft tissues such as tendons, ligaments, or meniscus. To mimic the fiber alignment present in native tissue, the CS/PEO blend solution was electrospun using a traditional static plate, a rotating drum collector, and a rotating disk collector to get, respectively, random, parallel, circumferential-oriented fibers. The effects of the different orientations (parallel or circumferential) and high-speed rotating collector influenced fiber morphology, leading to a reduction in nanofiber diameters and an improvement in mechanical properties
    corecore