308 research outputs found
What Actually Happened
This is the text of The Lindley Lecture for 1971, given by P.H. Nowell-Smith (1914-2006), a British philosopher
Natural Compatibilism, Indeterminism, and Intrusive Metaphysics
The claim that common sense regards free will and moral responsibility as compatible with determinism has played a central role in both analytic and experimental philosophy. In this paper, we show that evidence in favor of this ânatural compatibilismâ is undermined by the role that indeterministic metaphysical views play in how people construe deterministic scenarios. To demonstrate this, we re-examine two classic studies that have been used to support natural compatibilism. We find that although people give apparently compatibilist responses, this is largely explained by the fact that people import an indeterministic metaphysics into deterministic scenarios when making judgments about freedom and responsibility. We conclude that judgments based on these scenarios are not reliable evidence for natural compatibilism
Framing the Real: LefĂšbvre and NeoRealist Cinematic Space as Practice
In 1945 Roberto Rossellini's Neo-realist Rome, Open City set in motion an approach to cinema and its representation of real life â and by extension real spaces â that was to have international significance in film theory and practice. However, the re-use of the real spaces of the city, and elsewhere, as film sets in Neo-realist film offered (and offers) more than an influential aesthetic and set of cinematic theories. Through Neo-realism, it can be argued that we gain access to a cinematic relational and multidimensional space that is not made from built sets, but by filming the built environment. On the one hand, this space allows us to "notice" the contradictions around us in our cities and, by extension, the societies that have produced those cities, while on the other, allows us to see the spatial practices operative in the production and maintenance of those contradictions. In setting out a template for understanding the spatial practices of Neo-realism through the work of Henri LefĂšbvre, this paper opens its films, and those produced today in its wake, to a spatio-political reading of contemporary relevance. We will suggest that the rupturing of divisions between real spaces and the spaces of film locations, as well the blurring of the difference between real life and performed actions for the camera that underlies much of the central importance of Neo-realism, echoes the arguments of LefĂšbvre with regard the social production of space. In doing so, we will suggest that film potentially had, and still has, a vital role to play in a critique of contemporary capitalist spatial practices
Quantitative Interpretation of a Genetic Model of Carcinogenesis Using Computer Simulations
The genetic model of tumorigenesis by Vogelstein et al. (V theory) and the molecular definition of cancer hallmarks by Hanahan and Weinberg (W theory) represent two of the most comprehensive and systemic understandings of cancer. Here, we develop a mathematical model that quantitatively interprets these seminal cancer theories, starting from a set of equations describing the short life cycle of an individual cell in uterine epithelium during tissue regeneration. The process of malignant transformation of an individual cell is followed and the tissue (or tumor) is described as a composite of individual cells in order to quantitatively account for intra-tumor heterogeneity. Our model describes normal tissue regeneration, malignant transformation, cancer incidence including dormant/transient tumors, and tumor evolution. Further, a novel mechanism for the initiation of metastasis resulting from substantial cell death is proposed. Finally, model simulations suggest two different mechanisms of metastatic inefficiency for aggressive and less aggressive cancer cells. Our work suggests that cellular de-differentiation is one major oncogenic pathway, a hypothesis based on a numerical description of a cell's differentiation status that can effectively and mathematically interpret some major concepts in V/W theories such as progressive transformation of normal cells, tumor evolution, and cancer hallmarks. Our model is a mathematical interpretation of cancer phenotypes that complements the well developed V/W theories based upon description of causal biological and molecular events. It is possible that further developments incorporating patient- and tissue-specific variables may build an even more comprehensive model to explain clinical observations and provide some novel insights for understanding cancer
Genomic Restructuring in the Tasmanian Devil Facial Tumour: Chromosome Painting and Gene Mapping Provide Clues to Evolution of a Transmissible Tumour
Devil facial tumour disease (DFTD) is a fatal, transmissible malignancy that threatens the world's largest marsupial carnivore, the Tasmanian devil, with extinction. First recognised in 1996, DFTD has had a catastrophic effect on wild devil numbers, and intense research efforts to understand and contain the disease have since demonstrated that the tumour is a clonal cell line transmitted by allograft. We used chromosome painting and gene mapping to deconstruct the DFTD karyotype and determine the chromosome and gene rearrangements involved in carcinogenesis. Chromosome painting on three different DFTD tumour strains determined the origins of marker chromosomes and provided a general overview of the rearrangement in DFTD karyotypes. Mapping of 105 BAC clones by fluorescence in situ hybridisation provided a finer level of resolution of genome rearrangements in DFTD strains. Our findings demonstrate that only limited regions of the genome, mainly chromosomes 1 and X, are rearranged in DFTD. Regions rearranged in DFTD are also highly rearranged between different marsupials. Differences between strains are limited, reflecting the unusually stable nature of DFTD. Finally, our detailed maps of both the devil and tumour karyotypes provide a physical framework for future genomic investigations into DFTD
Ordering of mutations in preinvasive disease stages of esophageal carcinogenesis.
Cancer genome sequencing studies have identified numerous driver genes, but the relative timing of mutations in carcinogenesis remains unclear. The gradual progression from premalignant Barrett's esophagus to esophageal adenocarcinoma (EAC) provides an ideal model to study the ordering of somatic mutations. We identified recurrently mutated genes and assessed clonal structure using whole-genome sequencing and amplicon resequencing of 112 EACs. We next screened a cohort of 109 biopsies from 2 key transition points in the development of malignancy: benign metaplastic never-dysplastic Barrett's esophagus (NDBE; n=66) and high-grade dysplasia (HGD; n=43). Unexpectedly, the majority of recurrently mutated genes in EAC were also mutated in NDBE. Only TP53 and SMAD4 mutations occurred in a stage-specific manner, confined to HGD and EAC, respectively. Finally, we applied this knowledge to identify high-risk Barrett's esophagus in a new non-endoscopic test. In conclusion, mutations in EAC driver genes generally occur exceptionally early in disease development with profound implications for diagnostic and therapeutic strategies
A barrier to homologous recombination between sympatric strains of the cooperative soil bacterium Myxococcus xanthus
The bacterium Myxococcus xanthus glides through soil in search of prey microbes, but when food
sources run out, cells cooperatively construct and sporulate within multicellular fruiting bodies.
M. xanthus strains isolated from a 16 Ă 16-cm-scale patch of soil were previously shown to have
diversified into many distinct compatibility types that are distinguished by the failure of swarming
colonies to merge upon encounter. We sequenced the genomes of 22 isolates from this population
belonging to the two most frequently occurring multilocus sequence type (MLST) clades to trace
patterns of incipient genomic divergence, specifically related to social divergence. Although
homologous recombination occurs frequently within the two MLST clades, we find an almost
complete absence of recombination events between them. As the two clades are very closely related
and live in sympatry, either ecological or genetic barriers must reduce genetic exchange between
them. We find that the rate of change in the accessory genome is greater than the rate of amino-acid
substitution in the core genome. We identify a large genomic tract that consistently differs between
isolates that do not freely merge and therefore is a candidate region for harbouring gene(s)
responsible for self/non-self discrimination
Tigers of Sundarbans in India: Is the Population a Separate Conservation Unit?
The Sundarbans tiger inhabits a unique mangrove habitat and are morphologically distinct from the recognized tiger subspecies in terms of skull morphometrics and body size. Thus, there is an urgent need to assess their ecological and genetic distinctiveness and determine if Sundarbans tigers should be defined and managed as separate conservation unit. We utilized nine microsatellites and 3 kb from four mitochondrial DNA (mtDNA) genes to estimate genetic variability, population structure, demographic parameters and visualize historic and contemporary connectivity among tiger populations from Sundarbans and mainland India. We also evaluated the traits that determine exchangeability or adaptive differences among tiger populations. Data from both markers suggest that Sundarbans tiger is not a separate tiger subspecies and should be regarded as Bengal tiger (P. t. tigris) subspecies. Maximum likelihood phylogenetic analyses of the mtDNA data revealed reciprocal monophyly. Genetic differentiation was found stronger for mtDNA than nuclear DNA. Microsatellite markers indicated low genetic variation in Sundarbans tigers (He= 0.58) as compared to other mainland populations, such as northern and Peninsular (Hebetween 0.67- 0.70). Molecular data supports migration between mainland and Sundarbans populations until very recent times. We attribute this reduction in gene flow to accelerated fragmentation and habitat alteration in the landscape over the past few centuries. Demographic analyses suggest that Sundarbans tigers have diverged recently from peninsular tiger population within last 2000 years. Sundarbans tigers are the most divergent group of Bengal tigers, and ecologically non-exchangeable with other tiger populations, and thus should be managed as a separate "evolutionarily significant unit" (ESU) following the adaptive evolutionary conservation (AEC) concept.Wildlife Institute of India, Dehra Dun (India)
- âŠ