166 research outputs found

    Bis[N-(4-chloro­phen­yl)pyridine-3-carboxamide]­silver(I) nitrate

    Get PDF
    In the title compound, [Ag(C12H9ClN2O)2]NO3, two N atoms from two pyridine rings of two N-(4-chloro­phen­yl)pyridine-3-carboxamide ligands coordinate to the AgI atom, forming a nearly linear geometry with an N—Ag—N angle of 173.41 (7)°. The crystal structure is stabilized by N—H⋯O, C—H⋯O and C—H⋯Cl hydrogen bonds and π–π stacking inter­actions [centroid–centroid distance = 3.5469 (16) Å] between the pyridyl and benzene rings. The shortest Ag⋯Ag distance is 3.2574 (5) Å

    2,2′-(Propane-2,2-di­yl)dibenzothia­zole

    Get PDF
    The two symmetry-independent mol­ecules in the asymmetric unit of the title compound, C17H14N2S2, have similar geometry; the dihedral angles between the least-squares planes of the benzothia­zole groups in the two mol­ecules are 83.93 (3) and 81.26 (3)°

    Radiographers supporting radiologists in the interpretation of screening mammography: a viable strategy to meet the shortage in the number of radiologists.

    Get PDF
    BackgroundAn alternative approach to the traditional model of radiologists interpreting screening mammography is necessary due to the shortage of radiologists to interpret screening mammograms in many countries.MethodsWe evaluated the performance of 15 Mexican radiographers, also known as radiologic technologists, in the interpretation of screening mammography after a 6 months training period in a screening setting. Fifteen radiographers received 6 months standardized training with radiologists in the interpretation of screening mammography using the Breast Imaging Reporting and Data System (BI-RADS) system. A challenging test set of 110 cases developed by the Breast Cancer Surveillance Consortium was used to evaluate their performance. We estimated sensitivity, specificity, false positive rates, likelihood ratio of a positive test (LR+) and the area under the subject-specific Receiver Operating Characteristic (ROC) curve (AUC) for diagnostic accuracy. A mathematical model simulating the consequences in costs and performance of two hypothetical scenarios compared to the status quo in which a radiologist reads all screening mammograms was also performed.ResultsRadiographer's sensitivity was comparable to the sensitivity scores achieved by U.S. radiologists who took the test but their false-positive rate was higher. Median sensitivity was 73.3 % (Interquartile range, IQR: 46.7-86.7 %) and the median false positive rate was 49.5 % (IQR: 34.7-57.9 %). The median LR+ was 1.4 (IQR: 1.3-1.7 %) and the median AUC was 0.6 (IQR: 0.6-0.7). A scenario in which a radiographer reads all mammograms first, and a radiologist reads only those that were difficult for the radiographer, was more cost-effective than a scenario in which either the radiographer or radiologist reads all mammograms.ConclusionsGiven the comparable sensitivity achieved by Mexican radiographers and U.S. radiologists on a test set, screening mammography interpretation by radiographers appears to be a possible adjunct to radiologists in countries with shortages of radiologists. Further studies are required to assess the effectiveness of different training programs in order to obtain acceptable screening accuracy, as well as the best approaches for the use of non-physician readers to interpret screening mammography

    Structural systematics and conformational analyses of a 3x3 isomer grid of fluoro-N-(pyridyl)benzamides: physicochemical correlations, polymorphism and isomorphous relationships

    Get PDF
    An isomer grid of nine fluoro-N-(pyridyl)benzamides (Fxx) (x = para-/meta-/ortho-) has been examined to correlate structural relationships between the experimental crystal structure and ab initio calculations, based on the effect of fluorine (Fx) and pyridine N-atom (x) substitution patterns on molecular conformation. Eight isomers form N—H...N hydrogen bonds, and only one (Fom) aggregates via intermolecular N—H...O=C interactions exclusively. The Fpm and Fom isomers both crystallize as two polymorphs with Fpm_O (N—H...O=C chains, P-syn) and Fpm_N (N— H...N chains, P-anti) both in P21/n (Z0 = 1) differing by their meta-N atom locations (P-syn, P-anti; Npyridine referenced to N—H), whereas the disordered Fom_O is mostly P-syn (Z` = 6) compared with Fom_F (P-anti) (Z` = 1). In the Fxo triad twisted dimers form cyclic R22(8) rings via N—H...N interactions. Computational modelling and conformational preferences of the isomer grid demonstrate that the solid-state conformations generally conform with the most stable calculated conformations except for the Fxm triad, while calculations of the Fox triad predict the intramolecular N— H...F interaction established by spectroscopic and crystallographic data. Comparisons of Fxx with related isomer grids reveal a high degree of similarity in solid-state aggregation and physicochemical properties, while correlation of the melting point behaviour indicates the significance of the substituent position on melting point behaviour rather than the nature of the substituent

    Vapochromic Behaviour of M[Au(CN)2]2-Based Coordination Polymers (M = Co, Ni)

    Get PDF
    A series of M[Au(CN)2]2(analyte)x coordination polymers (M = Co, Ni; analyte = dimethylsulfoxide (DMSO), N,N-dimethylformamide (DMF), pyridine; x = 2 or 4) was prepared and characterized. Addition of analyte vapours to solid M(μ-OH2)[Au(CN)2]2 yielded visible vapochromic responses for M = Co but not M = Ni; the IR νCN spectral region changed in every case. A single crystal structure of Zn[Au(CN)2]2(DMSO)2 revealed a corrugated 2-D layer structure with cis-DMSO units. Reacting a Ni(II) salt and K[Au(CN)2] in DMSO yielded the isostructural Ni[Au(CN)2]2(DMSO)2 product. Co[Au(CN)2]2(DMSO)2 and M[Au(CN)2]2(DMF)2 (M = Co, Ni) complexes have flat 2-D square-grid layer structures with trans-bound DMSO or DMF units; they are formed via vapour absorption by solid M(μ-OH2)[Au(CN)2]2 and from DMSO or DMF solution synthesis. Co[Au(CN)2]2(pyridine)4 is generated via vapour absorption by Co(μ-OH2)[Au(CN)2]2; the analogous Ni complex is synthesized by immersion of Ni(μ-OH2)[Au(CN)2]2 in 4% aqueous pyridine. Similar immersion of Co(μ-OH2)[Au(CN)2]2 yielded Co[Au(CN)2]2(pyridine)2, which has a flat 2-D square-grid structure with trans-pyridine units. Absorption of pyridine vapour by solid Ni(μ-OH2)[Au(CN)2]2 was incomplete, generating a mixture of pyridine-bound complexes. Analyte-free Co[Au(CN)2]2 was prepared by dehydration of Co(μ-OH2)[Au(CN)2]2 at 145 °C; it has a 3-D diamondoid-type structure and absorbs DMSO, DMF and pyridine to give the same materials as by vapour absorption from the hydrate

    Los diminutivos en español : un estudio de diactologia comparada

    No full text

    LA PARTICIPACION DE LA MUJER EN EL MERCADO LABORAL

    No full text
    corecore