28 research outputs found

    Mechanisms of continence and surgical cure in female and male SUI: Surgical research initiatives

    Full text link
    Aims To report the conclusions of the Think Tank on mechanisms of incontinence and surgical cure in female and male SUI: surgical research initiatives during the ICI‐RS meeting in 2010. Methods The sub‐group considered five areas for future research in stress urinary incontinence (SUI); (i) epidemiology and public health efforts in SUI, (ii) the basic sciences examining the physiology and pathophysiology of the continence mechanism, (iii) diagnostic techniques and clinical assessment of SUI, (iv) the future of treatment and surgical cure, and (v) the separate issue of male SUI. Results Roadblocks to progress were identified for each of the five directions. Conclusions Future research directions are suggested for each of these areas. Neurourol. Urodynam. 30:704–707, 2011. © 2011 Wiley‐Liss, Inc.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/87181/1/21139_ftp.pd

    Camtrap DP: an open standard for the FAIR exchange and archiving of camera trap data

    Get PDF
    Camera trapping has revolutionized wildlife ecology and conservation by providing automated data acquisition, leading to the accumulation of massive amounts of camera trap data worldwide. Although management and processing of camera trap-derived Big Data are becoming increasingly solvable with the help of scalable cyber-infrastructures, harmonization and exchange of the data remain limited, hindering its full potential. There is currently no widely accepted standard for exchanging camera trap data. The only existing proposal, “Camera Trap Metadata Standard” (CTMS), has several technical shortcomings and limited adoption. We present a new data exchange format, the Camera Trap Data Package (Camtrap DP), designed to allow users to easily exchange, harmonize and archive camera trap data at local to global scales. Camtrap DP structures camera trap data in a simple yet flexible data model consisting of three tables (Deployments, Media and Observations) that supports a wide range of camera deployment designs, classification techniques (e.g., human and AI, media-based and event-based) and analytical use cases, from compiling species occurrence data through distribution, occupancy and activity modeling to density estimation. The format further achieves interoperability by building upon existing standards, Frictionless Data Package in particular, which is supported by a suite of open software tools to read and validate data. Camtrap DP is the consensus of a long, in-depth, consultation and outreach process with standard and software developers, the main existing camera trap data management platforms, major players in the field of camera trapping and the Global Biodiversity Information Facility (GBIF). Under the umbrella of the Biodiversity Information Standards (TDWG), Camtrap DP has been developed openly, collaboratively and with version control from the start. We encourage camera trapping users and developers to join the discussion and contribute to the further development and adoption of this standard. Biodiversity data, camera traps, data exchange, data sharing, information standardspublishedVersio

    Using the GeoFEST Faulted Region Simulation System

    No full text
    GeoFEST (the Geophysical Finite Element Simulation Tool) simulates stress evolution, fault slip and plastic/elastic processes in realistic materials, and so is suitable for earthquake cycle studies in regions such as Southern California. Many new capabilities and means of access for GeoFEST are now supported. New abilities include MPI-based cluster parallel computing using automatic PYRAMID/Parmetis-based mesh partitioning, automatic mesh generation for layered media with rectangular faults, and results visualization that is integrated with remote sensing data. The parallel GeoFEST application has been successfully run on over a half-dozen computers, including Intel Xeon clusters, Itanium II and Altix machines, and the Apple G5 cluster. It is not separately optimized for different machines, but relies on good domain partitioning for load-balance and low communication, and careful writing of the parallel diagonally preconditioned conjugate gradient solver to keep communication overhead low. Demonstrated thousand-step solutions for over a million finite elements on 64 processors require under three hours, and scaling tests show high efficiency when using more than (order of) 4000 elements per processor. The source code and documentation for GeoFEST is available at no cost from Open Channel Foundation. In addition GeoFEST may be used through a browser-based portal environment available to approved users. That environment includes semi-automated geometry creation and mesh generation tools, GeoFEST, and RIVA-based visualization tools that include the ability to generate a flyover animation showing deformations and topography. Work is in progress to support simulation of a region with several faults using 16 million elements, using a strain energy metric to adapt the mesh to faithfully represent the solution in a region of widely varying strain

    Evaluating Pathogenicity of Rare Variants From Dilated Cardiomyopathy in the Exome Era

    No full text
    BACKGROUND: Human exome sequencing is a recently developed tool to aid in the discovery of novel coding variants. Now broadly applied, exome sequencing datasets provide a novel opportunity to evaluate the allele frequencies of previously published pathogenic rare variants. METHODS AND RESULTS: We examined the exome dataset from the NHLBI Exome Sequencing Project (ESP) and compared this dataset with a catalog of 197 previously published rare variants reported as causative of dilated cardiomyopathy (DCM) from familial and sporadic cases. Of these 197, 33 (16.8%) were also present in the ESP database, raising the question of whether they were uncommon polymorphisms. Supporting functional data has been published for 14 of the 33 (42%), suggesting they are unlikely to be false positives. The frequencies of these functional variants in the ESP dataset ranged from 0.02–1.33% (median 0.04%), which when applied as a cut-off to filter variants in a DCM pedigree identified an additional DCM candidate gene. A greater proportion of sporadic DCM cases had variants that were present in the ESP dataset vs novel variants (i.e. not in ESP; 44% vs 21%), p=0.002), suggesting some of the variants identified as disease causing in sporadic DCM are either false positives or low penetrance alleles in human populations. CONCLUSIONS: Rare nonsynonymous variants identified in DCM subjects also present at very low frequencies in public databases are likely relevant for DCM. Allele frequencies >0.04% are of less certain pathogenicity, especially if indentified in sporadic cases, although this cut-off should be viewed as preliminary

    Exome sequencing and genome-wide linkage analysis in 17 families illustrate the complex contribution of TTN truncating variants to dilated cardiomyopathy

    No full text
    BACKGROUND- Familial dilated cardiomyopathy (DCM) is a genetically heterogeneous disease with >30 known genes. TTN truncating variants were recently implicated in a candidate gene study to cause 25% of familial and 18% of sporadic DCM cases. METHODS AND RESULTS- We used an unbiased genome-wide approach using both linkage analysis and variant filtering across the exome sequences of 48 individuals affected with DCM from 17 families to identify genetic cause. Linkage analysis ranked the TTN region as falling under the second highest genome-wide multipoint linkage peak, multipoint logarithm of odds, 1.59. We identified 6 TTN truncating variants carried by individuals affected with DCM in 7 of 17 DCM families (logarithm of odds, 2.99); 2 of these 7 families also had novel missense variants that segregated with disease. Two additional novel truncating TTN variants did not segregate with DCM. Nucleotide diversity at the TTN locus, including missense variants, was comparable with 5 other known DCM genes. The average number of missense variants in the exome sequences from the DCM cases or the ≈5400 cases from the Exome Sequencing Project was ≈23 per individual. The average number of TTN truncating variants in the Exome Sequencing Project was 0.014 per individual. We also identified a region (chr9q21.11-q22.31) with no known DCM genes with a maximum heterogeneity logarithm of odds score of 1.74. CONCLUSIONS- These data suggest that TTN truncating variants contribute to DCM cause. However, the lack of segregation of all identified TTN truncating variants illustrates the challenge of determining variant pathogenicity even with full exome sequencing

    Nocturia think tank: Focus on nocturnal polyuria: ICI-RS 2011

    No full text
    The following is a report of the proceedings of the Nocturia Think Tank sessions of the annual International Consultation on Incontinence-Research Society, which took place June 1315, 2011 in Bristol, UK. The report is organized into sections pertaining to the main topics of discussions having occurred at that meeting, centering on the relationship of nocturnal polyuria (NP) and nocturia but also synthesizing more current evidence advancing our knowledge of the diagnosis and management of nocturia. This article is not meant to be a comprehensive review on the subject of nocturia, a number of which are available in the recent literature. All authors were physically present during, or in a preliminary session just prior to, the meeting in Bristol. Neurourol. Urodynam. 31:330339, 2012

    Significant Linkage Evidence for a Predisposition Gene for Pelvic Floor Disorders on Chromosome 9q21

    No full text
    Predisposition factors for pelvic floor disorders (PFDs), including pelvic organ prolapse (POP), stress urinary incontinence (SUI), urge urinary incontinence (UUI), and hernias, are not well understood. We assessed linkage evidence for PFDs in mostly sister pairs who received treatment for moderate-to-severe POP. We genotyped 70 affected women of European descent from 32 eligible families with at least two affected cases by using the Illumina 1 million single-nucleotide polymorphism (SNP) marker set. Parametric linkage analysis with general dominant and recessive models was performed by the Markov chain Monte Carlo linkage analysis method, MCLINK, and a set of SNPs was formed, from which those in high linkage disequilibrium were eliminated. Significant genome-wide evidence for linkage was identified on chromosome 9q21 with a HLOD score of 3.41 under a recessive model. Seventeen pedigrees (53%) had at least nominal evidence for linkage on a by-pedigree basis at this region. These results provide evidence for a predisposition gene for PFDs on chromosome 9q
    corecore