825 research outputs found

    The Ubiquity and Dual Nature of Ultra Compact Dwarfs

    Get PDF
    We present the discovery of several Ultra Compact Dwarfs (UCDs) located in field/group environments. Examination of these objects, plus literature objects, confirms the existence of two distinct formation channels for UCDs. We find that the UCDs we have discovered around the group elliptical NGC3923 (and UCDs generally) have properties consistent with their being the most luminous members of the host galaxy's globular cluster (GC) system. We describe UCDs of this type as giant GCs (GGCs). In contrast, the UCD we have found associated with the isolated S0 NGC4546 is clearly the result of the stripping of a nucleated companion galaxy. The young age (~3.4 Gyr) of the UCD, the lack of a correspondingly young GC population, the apparently short dynamical friction decay timescale (~0.5 Gyr) of the UCD, and the presence of a counterrotating gas disc in the host galaxy (co-rotating with the UCD) together suggest that this UCD is the liberated nucleus remaining after the recent stripping of a companion by NGC4546. We suggest a general scheme that unifies the formation of GCs, UCDs, and galaxy nuclei. In this picture "normal" GCs are a composite population, composed of GCs formed in situ, GCs acquired from accreted galaxies, and a population of lower mass stripped dwarf nuclei masquerading as GCs. Above a "scaling onset mass" of 2x10^6 Msun (Mv ~ -10), UCDs emerge together with a mass-size relation and a likely mass-metallicity relation (the "blue tilt"). In the mass range up to 7x10^7 Msun (Mv ~ -13) UCDs comprise a composite population of GGCs and stripped nuclei. Above 7x10^7 Msun, UCDs must be almost exclusively stripped nuclei, as no sufficiently rich GC systems exist to populate such an extreme of the GCLF.Comment: 23 pages, 16 figures, accepted for publication in MNRA

    On the problem of modeling for parameter identification in distributed structures

    Get PDF
    Structures are often characterized by parameters, such as mass and stiffness, that are spatially distributed. Parameter identification of distributed structures is subject to many of the difficulties involved in the modeling problem, and the choice of the model can greatly affect the results of the parameter identification process. Analogously to control spillover in the control of distributed-parameter systems, identification spillover is shown to exist as well and its effect is to degrade the parameter estimates. Moreover, as in modeling by the Rayleigh-Ritz method, it is shown that, for a Rayleigh-Ritz type identification algorithm, an inclusion principle exists in the identification of distributed-parameter systems as well, so that the identified natural frequencies approach the actual natural frequencies monotonically from above

    Understanding the central kinematics of globular clusters with simulated integrated-light IFU observations

    Get PDF
    The detection of intermediate mass black holes in the centres of globular clusters is highly controversial, as complementary observational methods often deliver significantly different results. In order to understand these discrepancies, we develop a procedure to simulate integral field unit (IFU) observations of globular clusters: Simulating IFU Star Cluster Observations (SISCO). The input of our software are realistic dynamical models of globular clusters that are then converted in a spectral data cube. We apply SISCO to Monte Carlo cluster simulations from Downing et al. (2010), with a realistic number of stars and concentrations. Using independent realisations of a given simulation we are able to quantify the stochasticity intrinsic to the problem of observing a partially resolved stellar population with integrated-light spectroscopy. We show that the luminosity-weighted IFU observations can be strongly biased by the presence of a few bright stars that introduce a scatter in the velocity dispersion measurements up to \simeq40% around the expected value, preventing any sound assessment of the central kinematic and a sensible interpretation of the presence/absence of an intermediate mass black hole. Moreover, we illustrate that, in our mock IFU observations, the average kinematic tracer has a mass of \simeq0.75 solar masses, only slightly lower than the mass of the typical stars examined in studies of resolved line-of-sight velocities of giant stars. Finally, in order to recover unbiased kinematic measurements we test different masking techniques that allow us to remove the spaxels dominated by bright stars, bringing the scatter down to a level of only a few percent. The application of SISCO will allow to investigate state-of-the-art simulations as realistic observations.Comment: 13 pages, 9 figures, 1 table. Accepted for publication in MNRA

    The life and health challenges of young Malaysian couples: results from a stakeholder consensus and engagement study to support non-communicable disease prevention

    Get PDF
    BACKGROUND: Malaysia faces burgeoning obesity and diabetes epidemics with a 250% and 88% increase respectively between 1996 and 2006. Identifying the health challenges of young adults in Malaysia, who constitute 27.5 % of the population, is critical for NCD prevention. The aim of the study was two-fold: (1) to achieve consensus amongst stakeholders on the most important challenge impacting the health of young adults, and (2) to engage with stakeholders to formulate a NCD prevention framework.METHODS: The Delphi Technique was utilised to achieve group consensus around the most important life and health challenges that young adults face in Malaysia. Subsequently, the results of the consensus component were shared with the stakeholders in an engagement workshop to obtain input on a NCD prevention framework.RESULTS: We found that life stress was a significant concern. It would seem that the apathy towards pursuing or maintaining a healthy lifestyle among young adults may be significantly influenced by the broader distal determinant of life stress. The high cost of living is suggested to be the main push factor for young working adults towards attaining better financial security to improve their livelihood. In turn, this leads to a more stressful lifestyle with less time to focus on healthier lifestyle choices.CONCLUSIONS: The findings highlight a pivotal barrier to healthier lifestyles. By assisting young adults to cope with daily living coupled with realistic opportunities to make healthier dietary choices, be more active, and less sedentary could assist in the development of NCD health promotion strategies<br/

    Being WISE I: Validating Stellar Population Models and M/L ratios at 3.4 and 4.6 microns

    Get PDF
    Using data from the WISE mission, we have measured near infra-red (NIR) photometry of a diverse sample of dust-free stellar systems (globular clusters, dwarf and giant early-type galaxies) which have metallicities that span the range -2.2 < [Fe/H] (dex) < 0.3. This dramatically increases the sample size and broadens the metallicity regime over which the 3.4 (W1) and 4.6 micron (W2) photometry of stellar populations have been examined. We find that the W1 - W2 colors of intermediate and old (> 2 Gyr) stellar populations are insensitive to the age of the stellar population, but that the W1 - W2 colors become bluer with increasing metallicity, a trend not well reproduced by most stellar population synthesis (SPS) models. In common with previous studies, we attribute this behavior to the increasing strength of the CO absorption feature located in the 4.6 micron bandpass with metallicity. Having used our sample to validate the efficacy of some of the SPS models, we use these models to derive stellar mass-to-light ratios in the W1 and W2 bands. Utilizing observational data from the SAURON and ATLAS3D surveys, we demonstrate that these bands provide extremely simple, yet robust stellar mass tracers for dust free older stellar populations that are freed from many of the uncertainties common among optical estimators.Comment: 11 pages, 6 figures, submitted to Ap

    ECO and RESOLVE: Galaxy Disk Growth in Environmental Context

    Get PDF
    We study the relationships between galaxy environments and galaxy properties related to disk (re)growth, considering two highly complete samples that are approximately baryonic mass limited into the high-mass dwarf galaxy regime, the Environmental COntext (ECO) catalog (data release herein) and the B-semester region of the REsolved Spectroscopy Of a Local VolumE (RESOLVE) survey. We quantify galaxy environments using both group identification and smoothed galaxy density field methods. We use by-eye and quantitative morphological classifications plus atomic gas content measurements and estimates. We find that blue early-type (E/S0) galaxies, gas-dominated galaxies, and UV-bright disk host galaxies all become distinctly more common below group halo mass ~10^11.5 Msun, implying that this low group halo mass regime may be a preferred regime for significant disk growth activity. We also find that blue early-type and blue late-type galaxies inhabit environments of similar group halo mass at fixed baryonic mass, consistent with a scenario in which blue early types can regrow late-type disks. In fact, we find that the only significant difference in the typical group halo mass inhabited by different galaxy classes is for satellite galaxies with different colors, where at fixed baryonic mass red early and late types have higher typical group halo masses than blue early and late types. More generally, we argue that the traditional morphology-environment relation (i.e., that denser environments tend to have more early types) can be largely attributed to the morphology-galaxy mass relation for centrals and the color-environment relation for satellites.Comment: 26 pages and 28 figures; v2 contains minor figure and text updates to match final published version in ApJ; ECO data table release now available at http://resolve.astro.unc.edu/pages/data.ph

    High mobility group A2 is a target for miRNA-98 in head and neck squamous cell carcinoma

    Get PDF
    BACKGROUND: HMGA2 expression has been shown to be associated with enhanced selective chemosensitivity towards the topoisomerase (topo) II inhibitor, doxorubicin, in cancer cells. Although the roles of signaling cascades and proteins as regulatory factors in development, neoplasia and adaptation to the environment are becoming well established, evidence for the involvement of regulatory small RNA molecules, such as microRNAs (miRNAs) as important regulators of both transcriptional and posttranscriptional gene silencing is presently mounting. RESULTS: Here we report that HMGA2 expression in head and neck squamous cell carcinoma (HNSCC) cells is regulated in part by miRNA-98 (miR-98). Albeit HMGA2 is associated with enhanced selective chemosensitivity towards topoisomerase (topo) II inhibitor, doxorubicin in HNSCC, the expression of HMGA2 is thwarted by hypoxia. This is accompanied by enhanced expression of miRNA-98 and other miRNAs, which predictably target HMGA2. Moreover, we show that transfection of pre-miR-98™ during normoxia diminishes HMGA2 and potentiates resistance to doxorubicin and cisplatin. These findings implicate the role of a miRNA as a key element in modulating tumors in variable microenvironments. CONCLUSION: These studies validate the observation that HMGA2 plays a prominent role in governing genotoxic responses. However, this may only represent cells growing under normal oxygen tensions. The demonstration that miRNA profiles are altered during hypoxia and repress a genotoxic response indicates that changes in microenvironment in eukaryotes mimic those of lower species and plants, where, for example, abiotic stresses regulate the expression of thousands of genes in plants at both transcriptional and posttranscriptional levels through a number of miRNAs and other small regulatory RNAs

    An EAGLE’s View of Ex-situ Galaxy Growth

    Get PDF
    Modern observational and analytic techniques now enable the direct measurement of star formation histories and the inference of galaxy assembly histories. However, current theoretical predictions of assembly are not ideally suited for direct comparison with such observational data. We therefore extend the work of prior examinations of the contribution of ex-situ stars to the stellar mass budget of simulated galaxies. Our predictions are specifically tailored for direct testing with a new generation of observational techniques by calculating ex-situ fractions as functions of galaxy mass and morphological type, for a range of surface brightnesses. These enable comparison with results from large FoV IFU spectrographs, and increasingly accurate spectral fitting, providing a look-up method for the estimated accreted fraction. We furthermore provide predictions of ex-situ mass fractions as functions of galaxy mass, galactocentric radius and environment. Using z = 0 snapshots from the 100cMpc3 and 25cMpc3 EAGLE simulations we corroborate the findings of prior studies, finding that ex-situ fraction increases with stellar mass for central and satellite galaxies in a stellar mass range of 2× 107 - 1.9× 1012 M⊙. For those galaxies of mass M*&amp;gt;5× 108M⊙, we find that the total ex-situ mass fraction is greater for more extended galaxies at fixed mass. When categorising satellite galaxies by their parent group/cluster halo mass we find that the ex-situ fraction decreases with increasing parent halo mass at fixed galaxy mass. This apparently counter-intuitive result may be due to high passing velocities within large cluster halos inhibiting efficient accretion onto individual galaxies

    The AIMSS Project, III : the stellar populations of compact stellar systems

    Get PDF
    In recent years, a growing zoo of compact stellar systems (CSSs) have been found whose physical properties (mass, size, velocity dispersion) place them between classical globular clusters (GCs) and true galaxies, leading to debates about their nature. Here we present results using a so far underutilized discriminant, their stellar population properties. Based on new spectroscopy from 8-10m telescopes, we derive ages, metallicities, and [α/Fe] of 29 CSSs. These range from GCs with sizes of merely a few parsec to compact ellipticals (cEs) larger than M32. Together with a literature compilation, this provides a panoramic view of the stellar population characteristics of early-type systems. We find that the CSSs are predominantly more metal rich than typical galaxies at the same stellar mass. At high mass, the cEs depart from the mass-metallicity relation of massive early-type galaxies, which forms a continuous sequence with dwarf galaxies. At lower mass, the metallicity distribution of ultracompact dwarfs (UCDs) changes at a few times 10^7 M⊙, which roughly coincides with the mass where luminosity function arguments previously suggested the GC population ends. The highest metallicities in CSSs are paralleled only by those of dwarf galaxy nuclei and the central parts of massive early types. These findings can be interpreted as CSSs previously being more massive and undergoing tidal interactions to obtain their current mass and compact size. Such an interpretation is supported by CSSs with direct evidence for tidal stripping, and by an examination of the CSS internal escape velocities.Fil: Janz, Joachin. Swinburne University; AustraliaFil: Norris, Mark A.. Gobierno de la Republica Federal de Alemania. Max Planck Institut Fur Astrophysik; AlemaniaFil: Forbes, Duncan A.. Swinburne University; AustraliaFil: Huxor, Avon. Universität Heidelberg; AlemaniaFil: Romanowsky, Aaron. San José State University; Estados UnidosFil: Frank, Matthias. Universität Heidelberg; AlemaniaFil: Escudero, Carlos Gabriel. Universidad Nacional de la Plata. Facultad de Ciencias Astronómicas y Geofísicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica la Plata; ArgentinaFil: Faifer, Favio Raúl. Universidad Nacional de la Plata. Facultad de Ciencias Astronómicas y Geofísicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica la Plata; ArgentinaFil: Forte, Juan Carlos. Gobierno de la Ciudad de Buenos Aires. Secretaria de Cultura. Subsecretaria de Patrimonio Cultural. Planetario ; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Kannappan, Sheila J.. University of North Carolina; Estados UnidosFil: Maraston, Claudia. Institute of Cosmology snd Gravitation; Estados UnidosFil: Brodie, Jean. University of California; Estados UnidosFil: Strader, Jay. Michigan State University; Estados UnidosFil: Thompson, Bradley. San José State University; Estados Unido
    corecore