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Abstract

Structures are often characterized by parameters, such as mass and

stiffness, that are spatially distributed. Parameter identification of

distributed structures is subject to many of the difficulties involved

in the modeling problem, and the choice of the model can greatly affect

the results of the parameter identification process. Analogously to

control spillover in the control of distributed-parameter systems,

identification spillover is shown to exist as well and its effect is to

degrade the parameter estimates. Moreover, as in modeling by the

Rayleigh-Ritz method, it is shown that, for a Rayleigh-Ritz type

identification algorithm, an inclusion principle exists in the

identification of distributed-parameter systems as well, so that the

identified natural Frequencies approach the actual natural Frequencies

monotonically from above.

Introduction

Structures are distributed-parameter systems, which implies that

they are characterized by parameters, such as mass and stiffness, that

are spatially distributed. The motion of distributed-parameter

structures is governed by partial differental equations (pde's), in

which the parameters appear in the Form of space-dependent coefficient

functions. For the most part, these pde's do not admit closed-form

solutions, so that one must be content with approximate solutions. To
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obtain an approximate solution, it is necessary to resort to spatial

discretization, which amounts to representing the motion of the

structure by a linear combination of admissible functions depending on

the spatial variables multiplied by time-dependent generalized

coordinates (Ref. l). Certain integrations over the structure eliminate

the dependence on the spatial variables. The net result is the

transformation of the pde's into a set of ordinary differential

equations (ode's), in which the parameters enter into the coefficient

matrices. The process of obtaining the set of ode's is equivalent to

deriving a discretized model designed to approximate the distributed

model of the actual structure. How well the discrete model is capable

of representing the distributed model depends on the number and type of

admissib3e functions used in the discretization process. Indeed, the

rate of convergence to the exact solution depends on the number of

admissible functions and, perhaps to a larger extent, on the type of

admissible functions used (Ref. 2). The discretized model can be used

to compute a finite number of lower modes of vibration. It is

symptomatic of such approximations that an even smaller number of

computed lower natural frequencies than the number of degrees of freedom

of the discrete model are accurate representations of the actual natural

frequencies (Ref. 1). The above discussion pertains to structural

modeling on the basis of given distributed parameters. The discrete

model can be used not only to compute the modes of vibration but also to

derive the system response. The problem of deriving the response to

given excitations when the system characteristics are known, albeit only

approximately, can be regarded as a direct problem.



Onoccasions, the system parameters are not knownand the object is

to infer them from measuredsystem response to knownexcitations. This

represents an inverse problem, more commonlyknownas parameter identi-

Fication, or parameter estimation. Clearly, in the case of distributed

structures, the object is to identify parameter distributions. The

implication is that the parameters are distributed nonuniformly, because

otherwise the problem would be almost trivial, reducing to the

identification of a single numberper parameter distribution. But,

nonuniform parameter distributions are precisely those preventing

closed-form solutions and demandingdiscrete models. Hence, if the

object is to identify nonuniform parameter distributions, then one must

expect at the very least the samekind of idiosyncrasies encountered in

mere modeling, so that one must proceed with extreme caution.

Commonlyused discretization procedures, for modeling as well as

For parameter identification, are the classical Rayleigh-Ritz method,

the Finite element method, the Galerkin method, etc. (Ref. i). They all

end up characterizing the system parameters by meansof matrices, such

as the mass and stiffness matrices. But, this is the very sameprocess

that proved incapable of giving wholly accurate eigensolutions. Indeed,

it is typical of the above techniques that less than one half of the

computednatural frequencies, and even Fewernatural modes, are

sufficiently accurate (Ref. i). Hence, it is unreasonable to expect

that a process identifying parameter matrices can yield more accurate

results than those obtained by a corresponding process in mere modeling.

There are several Factors that call for a cautious approach to

parameter identification in distributed structures. In particular, one

must interpret and use the results of the identification process



judiciously. The massand stiffness matrices are not unique for a

structure, and in fact they do not even represent physical quantities.

Indeed, the dimension of the matrices dependson the numberof admis-

sible functions used and the entries of the matrices depend on the

nature of the admissible Functions. These two factors are in fact

related, as a wise choice of admissible Functions can give superior

results with a smaller numberof admissible Functions. In particular,

one must makesure that the admissible Functions are such that all the

boundary conditions can be satisfied by Finite linear combinations of

these Functions (Ref. 2). The massand stiffness matrices themselves

have no physical meaning. For distributed structures, the quantities

having physical meaning are the massand stiffness distributions.

Perhaps the idea can be best illustrated by using the analogy with the

construction of a building, in which the mass and stiffness matrices

represent the scaffolding and the massand stiFFness distributions

represent the building itself. Hence, an identification process must

not have as its goal the identification of the mass and stiffness

matrices, but the identification of the mass and stiffness distributions

(Ref. 3). At times, the identification oF natural frequencies and modes

can serve as an intermediate step (Refs. 4 and 5). Another factor

affecting the quality of the results is the design of the experiment.

In particular, one must ensure that the actuators and sensors are at

significant points of the structure and that they are in sufficient

number. Of course, noisy actuators and sensors can cause difficulties

and even lead to instability in the identification process (Ref. 6).

In modeling, the question arises as to the effect of truncation on

the system eigenvalues. SpeciFically, what happensto the system
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eigenvalues when the numberof admissible functions is increased (or

decreased) in the modeling process? The answer to this question lies in

the inclusion principle (Ref. i), which can be used to verify the

accuracy of a model. Becauseparameter identification in distributed

structures depends heavily on modeling, the question can be asked

whether an inclusion principle exists in parameter identification.

Practical limitations dictate that control of distributed

structures be designed and implementedon the basis of truncated models,

whereby only a subset of the modesof the structure are actively

controlled. The excitation of the residual (uncontrolled) modescaused

by the finite-dimensional controller is knownas control spillover and

can degrade the system performance. The contamination of the sensor

measurementsby the residual modesis knownas observation spillover,

and the combination of control and observation spillover can destablize

the system (Ref. 7). An analogous effect exists in the identification

problem. Becausedistributed structures must be modeled by discrete

systems, the contamination from the residual (unmodeled)modesleads to

identification spillover. Identification spillover can cause errors in

the parameter estimates.

This paper stresses the importance of judicious modeling for

parameter identification. Distributed-parameter systems can be

approximated by a variety of models. The accuracy of these models

dependson the type and numberof admissible Functions used in the

discretization process. As shownin the numerical example, the accuracy

of the identified parameters depends on the type and numberof

admissible functions. In parameter identification, the system

parameters can be estimated directly using the system response to known



input (Refs. 3 and 6). In this paper, the modal quantities are

identified first, and then the system parameters are identified on the

basis of the estimated modal quantities (Ref. 4).

Modal identification of distributed structures can be performed

using a variational approach (Ref. 5). A ratio of the maximumpotential

energy to the reference kinetic energy, knownas the Rayleigh quotient,

can be used to generate the eigenvalues of the model. Based on the

inclusion principle, we conclude that, when the order of the model

increases, the eigenvalues of the model approach the eigenvalues of the

distributed structure monotonically from above. The variational modal

identification technique employs the temporal and spatial properties of

distributed structures to generate a pseudo-Rayleigh quotient, in which

stationary values of the quotient approximate the eigenvalues of the

actual system. Moreover, as the order of the identified model is

increased, the identified eigenvalues approach the actual eigenvalues

monotonically from above. A numerical exampledemonstrates that the

inclusion principle holds for the variational modal identification

technique.

Equation of Motion

We consider the case in which the linear motion of the distributed

structure is governed by the partial differential equation

Lu(P,t) + m(P)u(P,t) : f(P,t) , PE 0 (I)

where L is a self-adjoint positive definite differential operator of

order 2p, m is the mass density, u is the displacement at the spatial

position P at time t, f is the external force density and D is the

domain of extension of the system. The displacement u satisfies the
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boundary conditions

Biu(P,t ) : O, i = 1,2,...,p , P S (2)

where Bi are homogeneousdifferential operators of maximumorder 2p-£

and S is the boundary of D. The boundary conditions are either geo-

metric, in which case the order of Bi is smaller than p, or natural, in

which case the order of B. is smaller than 2p. Functions that are pl

times differentiable and satisfy the geometric boundary conditions are

called admissible functions. Functions that are 2p times differentiable

and satisfy all the boundary conditions are called comparison Functions.

Associated with EQ. (I), we have the eigenvalue problem

_®(P) : xm(P)_(P) (3)

where :(P) are Functions satisfying the boundary conditions, Eq. (2).

The solution to Eq. (3) consists of a denumerably infinite set of real

eigenfunctions _r(P) and associated real positive eigenvalues

(r = 1,2,...). For convenience, we order the eigenvalues so thatr

Xl _ k2 _ .... The eigenfunctions are orthogonal and they can be

normalized so as to satisfy the orthonormality conditions

J_ m(P)_r(P)¢s (P)dD = _rs' _ _r(p)_s(P)dD = Xr_rs (4)
D D

where _ is the Kronecker delta Function. From the expansion theorem
rs

(Ref. i), we can express the displacement u as a linear combination of

the eigenfunctions, or

u(P,t) = Z Cr(P)Ur (t) (5)
r=1

where Ur(t) are modal coordinates. Introducing Eq. (5) into Eq. (i),

considering Eqs. (4) and Following the usual steps, we obtain the

infinite set of second-order ordinary differential modal equations



2
Ur(t) + _rUr(t) : fr(t), r : 1,2,... (6)

where k
r

2
= _ in which

r' r represent the natural frequencies of

oscillation, and

fr(t) : / %(P)f(P,t)dD, r : 1,2,... (7)
D

are modal forces.

In the case of free vibration, Eqs. (6) reduce to

Ur(t) + _ Ur(t ) : O, r : 1,2,... (B)

Equations (8) are independent, so that distinct modes of vibration are

uncorrelated, or

< Ur(t ), Us(t) > =

T

lim i f Ur(t)Us(t ) dt = Qr6rs ,
T-: 0

r,s = 1,2,...

(9)

where the symbol < , > represents a temporal inner product and Qr (r =

1,2,...) are positive constants. Using the solution of Eqs. (8), it can

be shown that

< Ur(t), Us(t) > = _Qr_rs , r,s = 1,2,... (i0)

The modal coordinates Ur(t ) can be obtained from the system response by

using the modal Filters (Ref. 8)

Ur(t) = ; m(P)_r(P)u(P,t)dD , r = 1,2,... (11)
D

The eigenvalue problem given by Eqs. (2) and (3) can be replaced by

a variational problem consisting of determining the stationary values of

the Rayleigh quotient

R(_(P)) : ['u(P), :(P)] (12)

/ m(p)_2(p)dD
D

where _(P) is a trial Function and { , ) is an energy inner product

(Ref. I), the latter being obtained through integrations by parts
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of ; _(P)_(P)dD. Note that the energy inner product [ , ] is
D

symmetric because the stiffness operator_ in Eq. (I) is self-

adjoint. Moreover, the energy inner product {u, ul is proportional to

the potential energy of the system (Ref. i). Expressing the trial

function in Eq. (12) as a linear combination of the eigenfunctions, or

'u(P) : ri Cr:r (P) (13)=I

and considering the spatial orthonormality conditions, Eqs. (4), Eq.

22
Z Cr_r

r=l (14)
R(Cl,C2,... ) =

r:l

We note that the stationary values of the Rayleigh quotient R are

identicai to the system eigenvalues and occur every time the trial

function u(P) is identical to an eigenfunction (Ref. i).

Closed-form solutions to Eq. (I) exist in a few simple cases only,

namely cases in which the parameter distributions are uniform. For more

complex structures, an approximate solution must be sought. To this

end, the partial differential equation must be discretized in space, so

that an approximate solution is obtained by means of a finite set of

ordinary differential equations. Commonly used discretization

procedures are the classical Rayleigh-Ritz method, the finite element

method and the Galerkin method. The difference between the Rayleigh-

Ritz and Galerkin method lies in the choice of trial functions, in the

sense that Galerkin trial functions must be comparison Functions,

satisfying all the boundary conditions. If the Rayleigh-Ritz method

employs the variational Formulation given by Eq. (12), then the trial

Functions can be merely admissible functions, satisfying the geometric

(12) becomes



boundary conditions alone. Of course, the Rayleigh-Ritz method is

applicable only to self-adjoint systems, whereas Galerkin's method can

be used For non-self-adjoint systems as well (Ref. i). The Finite

element method is a variant of the classical Rayleigh-Ritz method, and

the trial Functions are local admissible functions, as opposed to the

trial functions in the classical Rayleigh-Ritz method, which are global

admissible functions.

Approximate Methods. The Rayleigh-Ritz Method

Consider the admissible Functions _r(P) (r = 1,2,...,n) satisfying

the geometric boundary conditions and express the displacement u(P,t) as

a linear combination of the admissible functions _r(P) multiplied by

time-dependent generalized coordinates qr(t) as Follows:

n

u(n)(p,t) = 7 _r(P)qr (t) = _T(P)q(t) (15)
r_l

where u(n)(p,t) is the nth-order approximation of u(P,t),

_(p) = {_l(p) _2(p) ... _n(P)I T is an n-vector of admissible functions

T is an n-vector of generalized
and q(t) = lql(t) q2(t) ... qn(t)l

coordinates. As n approaches infinity, the Rayleigh-Ritz solut-

ion u(n)(p,t) converges to the exact solution u(P,t), provided the trial

Functions _r(P) (r = 1,2,...) are complete in energy (Ref. i).

Substituting Eq. (15) into Eq. (i), multiplying on the left by _(P) and

integrating over the domain D of the structure, we obtain the n-degree-

of-freedom discretized model

M(n)q_(t) + K(n)q(t) = F(n)(t)
(16)

where

M(n) = _ m(p)_(P)_T(P) dD, K(n) = {_(P), _T(P)I

D

are n , n mass and stiffness matrices, respectively, and

(17a,b)

I0



F(n)(t) = _ _(P)f(P,t) dO (IB)
" 0

is an n-dimenslonal generalized force vector.

An attractive feature of the Rayleigh-Ritz method is that, by

increasing the number of degrees of freedom n, the previously calculated

mass and stiffness coefficients do not change, so that one need only

calculate an additional row (or column) to obtain the updated mass and

stiffness matrices. For an (n + l)-degree-of-freedom discretized model,

the mass and stiffness matrices have the form

: , K : (19a,b)
x X ×

The eigenvalue problems associated with the discrete models are given by

\_n)M(n)x_n) : K(n)x_ n), r : 1,2, .... n (20a)

(n+l)M(n+I)x(n+l): K(n+l) x (n+l) r = 1,2 ...,n + i (20b)
k r ~r -r ' '

The orthonormality conditions require that the solutions to Eq. (20a) be

normalized so that

(R)TM(R)x_n) x_n)TK(n)x (n) = x_n)_r s (21a,b)
_r . : 6rS' - ~S

From the inclusion principle (Ref. £), the relationship between the

eigenvalues x_n) (r = 1,2,...,n) of the n-degree-of-freedom model and

the eigenvalues z_n+l) (r = 1,2,...,n + i) of the (n + l)-degree-of-

Freedom model is given by

k_n+l) < x_n) < k_n+l) < k_n) _ ... s x_n) _ x_ I) (22)

As the number of degrees of freedom n in the'discretized model is

increased, the approximate eigenvalues decrease monotonically and

approach the actual eigenvalues of the system asymptotically from above

(Ref. i).
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For complex structures, the system parameters, which in the case at

hand are the mass and stiffness distributions, are complicated functions

of the spatial variables. Because closed-Form solutions to Eq. (I)

exist in simple cases only, almost always involving uniform parameter

distributions, we must obtain an approximate solution using Eq. (£6).

This implies that the use of Eq. (i) for identification purposes is not

practical, so that an exact parameter identification is not Feasible.

The inverse problem of identifying the unknown parameters represents a

compounded version of the direct or modeling problem, where in the

latter the parameters are known. We must expect at least the same

idiosyncrasies in parameter identification as those encountered in

modeling. A suitable choice of the number and type of trial functions

used in modeling to obtain Eq. (16) must be determined prior to any

parameter identification process.

A Rayleigh-Ritz Type Parameter Expansion

As in the Rayleigh-Ritz method, we expand the parameter

distributions in terms of a set of known Functions multipled by

undetermined coefficients. It is assumed that accurate representations

of the mass and stiffness distributions are given by (Ref. 4)

g h

m(P) = Z _rmr (p)' k(P) = _ _rkr (P) (23a,b)
r=1 r=1

where mr(P) and kr(P) are Functions from complete sets and _r and Br

are undetermined coefficients playing the role of unknown parameters in

the identification process. The Functions mr(P) and kr(P) can be global

or local functions. Using Eqs. (17) and (23), it can be shown that the

coefficient matrices in Eq. (16) can be written in the form (Ref. 3)

g _rMr(n ) K(n) h _n) (24a,b)M(n) : Z ' = _ arK
r=1 r=1
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where

M_n) = f mr(P)_(p)_T(P) dD , Kr = {_(P), _T(P)I r (25a,b)
D

Equations (24) are not new. In fact, Ref. 9 uses submatrix scaling to

define distributed parameters where the massand stiffness matrices are

expanded into a linear series of submatrices as given by Eq. (24). One

must proceed with caution, however, as Eqs. (15) and (23) represent

approximations to the displacement profile and distributed parameters,

respectively. Indeed, the discretized model given by Eq. (16) was

obtained as an approximate solution to Eq. (I). Moreover, the dis-

cretized representation given by Eq. (16) is not unique as the entries

in the mass and stiffness matrices depend on the type of admissible

functions used in Eqs. (15) and (25). The accuracy of the discretized

model depends on the type and numberof admissible Functions used (Ref.

2). It follows that the accuracy of the estimated parameters in the

identification process also depends on the type and numberof admissible

functions used.

Parameter Identification

In this section, we present an algorithm for identifying parameter

distributions in distributed structures. The algorithm represents an

iterative procedure in which the parameter distributions are updated

using a set of natural frequencies identified From the measured response

of the distributed structure. In the next section, we present a method

for identifying the natural frequencies From the system response. In

the ensuing discussion, we refer to the identified natural frequencies

of the distributed structure as the measured natural frequencies. We

adopt an incremental approach in which a vector _ = [_i _2 "'" _f IT of f

13



identified natural frequencies of the actual distributed structure,

playing the role of a measurementvector, is obtained and then used to

update a parameter vector given by p = [_I _2 "'" _g BI B2 "'" BhlT"

The iteration process is based on the incremental relations

_i

_ = _ _ _(n) _ = [_--_jIaP , aP = P - Eo (26a,b,c)

To begin the parameter identification, we postulate a parameter

vector Eo' compute the corresponding mass and stiffness matrices using

Eqs. (24) and (25) and solve for the associated natural frequencies
T

(n) = {i/_ 2//_ f_l using Eq. (20a). Then, we use the
.oJ

measurement vector _ to compute a_ by using Eq. (26a). The Jacobian

matrix in Eq. (26b) can be computed by using the orthogonality

conditions, Eqs. (21).

ami I Ixln)T_K(n
_pj - _ apj

The entries are

2x(n) T _M(n) ]) _In) - _i -i _pj '

i = 1,2,...,f j = 1,2,...,g + h (27)

where the eigenvectors x!n) are computed using Eq. (20a) and the entries
-I

of the mass and stiffness sensitivity matrices are given by

BM(n) In) 3K(n) = O, j = 1,2,...,g
= M , _pj

_PJ (2B)

_M (n) BK(n)
- O, - KSn) J = g + i, g + 2, ..., g + h

_Pj _Pj

Then, the increment A_ can be computed by means of Eq. (26b). For the

case in which the number f of measured natural frequencies is greater

than the number of parameters g + h, a least-squares solution of Eq.

(26b) yields

14



Finally, from Eq. (26c), weobtained the improvedparameter vector

? : P-o+ (3o)

The procedure is repeated using Eqs. (26a), (27), (29) and (30) until

convergence is achieved.

An Inclusion Principle in Parameter Identification

In the preceding section, the estimated parameters were updated

using the identified natural frequencies of the distributed structure.

The objective is to identify the natural frequencies _r(r = 1,2,...,f)

from the free response. To this end, we define a pseudo-Rayleigh

quotient suitable for modal identification in the form (Ref. 5)

R(_(P)) : < w(t), w(t) > (31)
< w(t), w(t)

where

w(t) : ] c(P)u(P,t)dD (32)

D

in which c(P) is an admissible function, i.e., a function satisfying the

geometric boundary conditions. We can express the admissible

Function c(P) as

c(P) = Z arm(P)_r (P) (33)
r=1

where _r(P) are eigenfunctions. Introducing Eqs. (5) and (33) into Eq.

(32) and the result into Eq. (31), considering the orthonormality

conditions, Eqs. (4), and the temporal correlation properties, Eqs. (9)

and (I0), we obtain

R(al,a2,... ) :

2 2
r=l arQr_r (34)

r=[

15



Note that Eq. (34) is identical to Eq. (14) with cr = arCQr, so that

stationary values of the pseudo-Rayleigh quotient, Eq. (315, are
2

identical to the eigenvalues xr = _r and they occur when c(P) is equal

to an eigenfunction multiplied by the massdistribution.

In practice, it is only possible to identify a finite numberof

natural frequencies and associated modesof vibration. To this end, we

express the trial Function c(P) as a finite linear combination of the

admissible functions ur(P) as Follows:

m (35)
_(m)(p) = Z VrUr(P5

r=l

where _(mS(P5 is the mth-order approximation of c(P) and where vr are

undetermined coefficients. Introducing Eqs. (155 and (35) into Eq.

R(Vl,V2,...,Vm) :

where

(32), we have

m n

w(t) = Z _ Vr_riqi(t)' _ri = ; _r(PS'_i(P)dD
r=1 i=l D

Introducing Eqs. (36) into Eq. (31), we obtain

m m _m) VrV sZIZ kr: S:1

•ZI Zlm s
r= S =

(36a,b)

(37)

n n

(m)=m_mr)= Z Z _ri_sj<qi(tS'qj(t5>'
mrs i=l j=1

r,s, = 1,2,...,m

(3B)

n n

i=l =i

Determining the stationary values of Rayleigh's quotient, Eq. (37), can

be replaced by the eigenvalue problem (Ref. i)

x(m)M(m)v(m5 = K(m)v(m) (39)

where the solution to Eq. (395 represents the mth-order approximation to

the stationary values of the pseudo-Rayleigh quotient, Eq. (31), and

16



where  avecor espood ogentries
and v_m), respectively. The mth-order approximate eigenfunctions can be

computed from the eigenvectors v(m) using

_m)(p) = T(p)v_m) (40)

The solution to Eqs. (39) and (40) represent the identified mth-order

approximation to the eigenvalues and eigenfunctions of the actual

system, in the same way as the solution to Eq. (20a) represents the nth-

order approximation to Eq. (3).

When m : n in Eqs. (38), the orders of the model and identified

model are equivalent, so that in this case identification spillover does

not occur. For the model to be an accurate representation of a

distributed structure, the number of degrees of freedom n can be quite

large, so that in practice the number m of identified natural

frequencies and mode shapes can be much smaller than n. In the case in

which m < n, identification spillover is present. Note that, by

increasing m in Eqs. (38), previously calculated entries in M(m)

and K(m) do not change. Hence, as in modeling (Ref. i), the identified

eigenvalues satisfy the inclusion principle as given by inequalities

(2z).

Numerical Example

As an illustration, we consider a rod in axial vibration with a

spring of spring constant k attached to the free end as shown in Fig.

I. For this case, the stiffness operator L in Eq. (i) has order 2 (p =

I) and is given by

L - _ [EA(x) _x ] (41)_x

where EA(x) is the axial stiffness. The boundary conditions are given

17



by

BI i at x : O, BI EA a-- + k at x = L (42)= : _X

Moreover, the energy inner product in Eq. (12) has the form

t 2[u, ul = i" EA dx + ku2(L,t) (43)
_0 \_x/

The mass and stiffness distributions for the actual model are given by

2

6m l(x_2 6EA ½ C_) I (44a,b)m(x) = _- [I - _L[; ], EA(x) = T [I -

As an illustration, we consider the case where the distributions are

known with unknown scaling such that g = h = I and that

ml(x ) = _ [i - _L[ I], kl(X) = [i - I _ )] in Eqs. (23). Hence, the

problem reduces to identifying three parameters, namely, m, EA and k.

Moreover, because free vibration data is used, to identify the

parameters uniquely, one of the parameters must be known. For

convenience, we chose m = i kg/m.

The first objective is to show that accurate modeling has a direct

influence on the accuracy of the identification results. The system

does not have a closed-Form solution so that we must resort to spatial

discretization. To this end, we consider two sets of trial Functions

_r(P) (r = 1,2,...,n) to be used in Eq. (15). The first set consists of

the admissible functions

_r(X) = sin (2r - l)_x (45)2L , r = 1,2,...,n

We note that these Functions satisfy the geometric boundary condition u

= 0 at x = 0. They represent the eigenfunctions to a related problem,

i.e., they are the eigenfunctions of a uniform rod with no spring at the

free end. The second set of trial functions consists of the functions

r_x r = 1,2,...,n (46)
_r(X) = sin 2L '

18



These functions are also admissible Functions and they represent quasi-

comparison functions for this example (Ref. 2). Note that a Finite

linear combination of the quasi-comparison Functions can satisfy the

natural boundary condition (i.e. B1 = EA_-- + k at x = L) whereas the
' _X '

First set of admissible Functions, although complete in energy, can only

satisfy the natural boundary condition when n approaches infinity.

To refine the system parameters EA and k, we used the First three

natural Frequencies From the actual model so that f = 3 in Eq. (28). As

an initially postulated model, we used the parameters EA = 1.5 N and k =

1.5 N/m, while the actual model parameters are EA = i N and k = i N/m.

To check the algorithm, several other cases involving different

initially postulated parameters were tested. The results are not

presented here, but for reasonable starting values the identification

results were insensitive to the initially postulated parameters and the

algorithm converged within five iterations. In addition to using

ordinary admissible functions and quasi-comparison functions for

modeling, different numbers of degrees of freedom were used. Table I

displays the results. As expected, the identified parameters improve as

the number n of degrees of freedom increases. Indeed, as the number n

of admissible Functions increases, the model becomes more representative

of the actual system, resulting in improved identified parameters. The

model with the admissible Functions can predict the value for EA very

well, but the identification of the parameter k is rather poor because a

finite number of admissible functions cannot satisfy the natural

boundary condition. On the other hand, the parameter identification

based on the model using quasi-comparison Functions is extremely good

for n > 4, as both parameters are identified exactly.
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The second objective is to illustrate the inclusion principle in

parameter identification and demonstrate the effects of identification

spillover. To this end, we consider the rod in axial vibration

described previously. To identify the natural frequencies from the free

response, it was necessary to simulate the response of the actual

system. The model for this purpose was obtained by the Rayleigh-Ritz

method using n = 8 admissible Functions in Eq. (15). The admissible

Functions used in the discretization were the quasi-comparison Functions

described by Eq. {46). Different order models were identified using the

free response, where m = 4,5,6 and 7 degrees of freedom were considered

in Eqs. (39). With the quasi-comparison functions as admissible

functions, Eq. (36b) yields

:ri : (47)

L[Si_r(r - i)x sin (r + i)_ l r = i- - (r+ '

We note that, to compute qi(t) and qi(t) (i = 1,2,...,8) in Eq. (38),

the model was excited using an initial impulse of magnitude I N.s acting

at x = L. To identify the natural frequencies, the solution of the

eigenvalue problem given by Eq. (39) was obtained and the results are

presented in Table 2. Note that identification spillover has the effect

of degrading the identified results. Indeed, the spillover From the

unmodeled degrees of freedom has the effect of increasing the identified

natural frequencies. Moreover, as the order of the identified model

increases, the estimated natural frequencies decrease monotonically and

approach the actual natural frequencies asymptotically from above. It

is also obvious from Table 2 that the computed eigenvalues satisfy the

inclusion principle, as stated by inequalities (22).
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Conclusions

Parameter identification in distributed structures is ordinarily

based on discretized models defined by mass and stiffness matrices.

Mass and stiffness matrices, however, have no physical meaning For

distributed structures, whereas mass and stiffness distributions do.

Indeed, the mass and stiffness distributions are the quantities

describing the physical characteristics of the structure. Moreover,

mass and stiffness matrices are not unique for a given structure and

their entries and dimensions depend on the number and type of trial

Functions used in the modeling process. Hence, the object of a

parameter identification technique should be to identify physical

properties and not mass and stiffness matrices.

Parameter identification in structures represents a compounded

version of the modeling problem in structures. Indeed, as the numerical

example indicates, the choice of the model can greatly affect the

results of the parameter identification process. The choice of the type

and number of admissible functions is at least as important in parameter

identification as it is in the problem of modeling distributed

structures. A wise choice of the type and number of the admissible

functions, can improve the results of the parameter identification

process.

Practical limitations dictate that the control of distributed-

parameter systems be designed on the basis of finite-order models. The

excitation of the unmodeled modes by finite-dimensional controller can

degrade the system performance. As in the control problem,

identification spillover exists and it has the effect of degrading the

estimates of the parameters. It is shown that an inclusion principle
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exists in the identification of distributed-parameter structures, so

that the identified natural frequencies approach the actual natural

frequencies monotonically from above.
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Table I.

n EA

4 1.0016

5 1.0010

6 1.0008

7 1.0006

8 1.0005

Identified Parameters Using
Quasi-ComparisonFunctions
Freedom.

AF

RMS
k ERROR

0.91705 5.87

0.93335 4.71

0.94474 3.91

0.95286 3.33

0.95208 2.89

Admissible Functions (AF) and

(QCF) for Different Degrees of

QCF

% RMS

EA k ERROR

0.98809 1.0564 4.08

0.99996 0.99977 0.02

0.99996 0.99984 0.01

0.99999 0.99987 0.01

1.00000 1.00000 0.00

Table 2 Identified Natural Frequencies

Identified Natural

Frequencies (rad/s)

for DifFerent

m=4 m=5 m=6 m=7

2.250 2.249 2.228

5.225 5.223 5.133

17.165 8.822 8.173

23.860 17.198 12.860

63.161 23.918 17.308

63.351 24.155

64.156

2.388

15.083

21.886

57.160

Degrees of Freedom.

Natural Frequencies of

Discrete Model (rad/s)

2.210

5.083

8.087

11.148

14.237

17.535

24.388

64.946
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EA(x), m(x)
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Figure I. Rod in Axial Vibration with a Spring Attached to the Free End


