75 research outputs found

    Deriving an optimal threshold of waist circumference for detecting cardiometabolic risk in sub-Saharan Africa.

    Get PDF
    BACKGROUND: Waist circumference (WC) thresholds derived from western populations continue to be used in sub-Saharan Africa (SSA) despite increasing evidence of ethnic variation in the association between adiposity and cardiometabolic disease and availability of data from African populations. We aimed to derive a SSA-specific optimal WC cut-point for identifying individuals at increased cardiometabolic risk. METHODS: We used individual level cross-sectional data on 24 181 participants aged ⩾15 years from 17 studies conducted between 1990 and 2014 in eight countries in SSA. Receiver operating characteristic curves were used to derive optimal WC cut-points for detecting the presence of at least two components of metabolic syndrome (MS), excluding WC. RESULTS: The optimal WC cut-point was 81.2 cm (95% CI 78.5-83.8 cm) and 81.0 cm (95% CI 79.2-82.8 cm) for men and women, respectively, with comparable accuracy in men and women. Sensitivity was higher in women (64%, 95% CI 63-65) than in men (53%, 95% CI 51-55), and increased with the prevalence of obesity. Having WC above the derived cut-point was associated with a twofold probability of having at least two components of MS (age-adjusted odds ratio 2.6, 95% CI 2.4-2.9, for men and 2.2, 95% CI 2.0-2.3, for women). CONCLUSION: The optimal WC cut-point for identifying men at increased cardiometabolic risk is lower (⩾81.2 cm) than current guidelines (⩾94.0 cm) recommend, and similar to that in women in SSA. Prospective studies are needed to confirm these cut-points based on cardiometabolic outcomes.International Journal of Obesity advance online publication, 31 October 2017; doi:10.1038/ijo.2017.240

    The Long-Baseline Neutrino Experiment: Exploring Fundamental Symmetries of the Universe

    Get PDF
    The preponderance of matter over antimatter in the early Universe, the dynamics of the supernova bursts that produced the heavy elements necessary for life and whether protons eventually decay --- these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our Universe, its current state and its eventual fate. The Long-Baseline Neutrino Experiment (LBNE) represents an extensively developed plan for a world-class experiment dedicated to addressing these questions. LBNE is conceived around three central components: (1) a new, high-intensity neutrino source generated from a megawatt-class proton accelerator at Fermi National Accelerator Laboratory, (2) a near neutrino detector just downstream of the source, and (3) a massive liquid argon time-projection chamber deployed as a far detector deep underground at the Sanford Underground Research Facility. This facility, located at the site of the former Homestake Mine in Lead, South Dakota, is approximately 1,300 km from the neutrino source at Fermilab -- a distance (baseline) that delivers optimal sensitivity to neutrino charge-parity symmetry violation and mass ordering effects. This ambitious yet cost-effective design incorporates scalability and flexibility and can accommodate a variety of upgrades and contributions. With its exceptional combination of experimental configuration, technical capabilities, and potential for transformative discoveries, LBNE promises to be a vital facility for the field of particle physics worldwide, providing physicists from around the globe with opportunities to collaborate in a twenty to thirty year program of exciting science. In this document we provide a comprehensive overview of LBNE's scientific objectives, its place in the landscape of neutrino physics worldwide, the technologies it will incorporate and the capabilities it will possess.Comment: Major update of previous version. This is the reference document for LBNE science program and current status. Chapters 1, 3, and 9 provide a comprehensive overview of LBNE's scientific objectives, its place in the landscape of neutrino physics worldwide, the technologies it will incorporate and the capabilities it will possess. 288 pages, 116 figure

    African tropical rainforest net carbon dioxide fluxes in the twentieth century

    Get PDF
    The African humid tropical biome constitutes the second largest rainforest region, significantly impacts global carbon cycling and climate, and has undergone major changes in functioning owing to climate and land-use change over the past century. We assess changes and trends in CO2 fluxes from 1901 to 2010 using nine land surface models forced with common driving data, and depict the inter-model variability as the uncertainty in fluxes. The biome is estimated to be a natural (no disturbance) net carbon sink (−0.02 kg C m−2 yr−1 or −0.04 Pg C yr−1, p < 0.05) with increasing strength fourfold in the second half of the century. The models were in close agreement on net CO2 flux at the beginning of the century (σ1901 = 0.02 kg C m−2 yr−1), but diverged exponentially throughout the century (σ2010 = 0.03 kg C m−2 yr−1). The increasing uncertainty is due to differences in sensitivity to increasing atmospheric CO2, but not increasing water stress, despite a decrease in precipitation and increase in air temperature. However, the largest uncertainties were associated with the most extreme drought events of the century. These results highlight the need to constrain modelled CO2 fluxes with increasing atmospheric CO2 concentrations and extreme climatic events, as the uncertainties will only amplify in the next century

    Whole-genome sequencing reveals host factors underlying critical COVID-19

    Get PDF
    Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalization2–4 after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes—including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)—in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease

    Deriving an optimal threshold of waist circumference for detecting cardiometabolic risk in sub-Saharan Africa

    Get PDF
    BACKGROUND: Waist circumference (WC) thresholds derived from western populations continue to be used in sub-Saharan Africa (SSA) despite increasing evidence of ethnic variation in the association between adiposity and cardiometabolic disease and availability of data from African populations. We aimed to derive a SSA-specific optimal WC cut-point for identifying individuals at increased cardiometabolic risk. METHODS: We used individual level cross-sectional data on 24 181 participants aged ⩾15 years from 17 studies conducted between 1990 and 2014 in eight countries in SSA. Receiver operating characteristic curves were used to derive optimal WC cutpoints for detecting the presence of at least two components of metabolic syndrome (MS), excluding WC. RESULTS: The optimal WC cut-point was 81.2 cm (95% CI 78.5–83.8 cm) and 81.0 cm (95% CI 79.2–82.8 cm) for men and women, respectively, with comparable accuracy in men and women. Sensitivity was higher in women (64%, 95% CI 63–65) than in men (53%, 95% CI 51–55), and increased with the prevalence of obesity. Having WC above the derived cut-point was associated with a twofold probability of having at least two components of MS (age-adjusted odds ratio 2.6, 95% CI 2.4–2.9, for men and 2.2, 95% CI 2.0–2.3, for women). CONCLUSION: The optimal WC cut-point for identifying men at increased cardiometabolic risk is lower (⩾81.2 cm) than current guidelines (⩾94.0 cm) recommend, and similar to that in women in SSA. Prospective studies are needed to confirm these cut-points based on cardiometabolic outcomes
    corecore