112 research outputs found

    Production of Υ(nS) mesons in Pb+Pb and pp collisions at 5.02 TeV

    Get PDF
    A measurement of the production of vector bottomonium states, Υ ( 1S ) , Υ ( 2S ) , and Υ ( 3S ) , in Pb + Pb and p p collisions at a center-of-mass energy per nucleon pair of 5.02 TeV is presented. The data correspond to integrated luminosities of 1.38 nb − 1 of Pb + Pb data collected in 2018, 0.44 nb − 1 of Pb + Pb data collected in 2015, and 0.26 fb − 1 of p p data collected in 2017 by the ATLAS detector at the Large Hadron Collider. The measurements are performed in the dimuon decay channel for transverse momentum p μ μ T < 30 GeV , absolute rapidity | y μ μ | < 1.5 , and Pb + Pb event centrality 0–80%. The production rates of the three bottomonium states in Pb + Pb collisions are compared with those in p p collisions to extract the nuclear modification factors as functions of event centrality, p μ μ T , and | y μ μ | . In addition, the suppression of the excited states relative to the ground state is studied. The results are compared with theoretical model calculations

    Search for boosted diphoton resonances in the 10 to 70 GeV mass range using 138 fb−1 of 13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for diphoton resonances in the mass range between 10 and 70 GeV with the ATLAS experiment at the Large Hadron Collider (LHC) is presented. The analysis is based on pp collision data corresponding to an integrated luminosity of 138 fb−1 at a centre-of-mass energy of 13 TeV recorded from 2015 to 2018. Previous searches for diphoton resonances at the LHC have explored masses down to 65 GeV, finding no evidence of new particles. This search exploits the particular kinematics of events with pairs of closely spaced photons reconstructed in the detector, allowing examination of invariant masses down to 10 GeV. The presented strategy covers a region previously unexplored at hadron colliders because of the experimental challenges of recording low-energy photons and estimating the backgrounds. No significant excess is observed and the reported limits provide the strongest bound on promptly decaying axion-like particles coupling to gluons and photons for masses between 10 and 70 GeV

    Evidence for the charge asymmetry in pp → tt¯ production at s√ = 13 TeV with the ATLAS detector

    Get PDF
    Inclusive and differential measurements of the top–antitop (tt¯) charge asymmetry Att¯C and the leptonic asymmetry Aℓℓ¯C are presented in proton–proton collisions at s√ = 13 TeV recorded by the ATLAS experiment at the CERN Large Hadron Collider. The measurement uses the complete Run 2 dataset, corresponding to an integrated luminosity of 139 fb−1, combines data in the single-lepton and dilepton channels, and employs reconstruction techniques adapted to both the resolved and boosted topologies. A Bayesian unfolding procedure is performed to correct for detector resolution and acceptance effects. The combined inclusive tt¯ charge asymmetry is measured to be Att¯C = 0.0068 ± 0.0015, which differs from zero by 4.7 standard deviations. Differential measurements are performed as a function of the invariant mass, transverse momentum and longitudinal boost of the tt¯ system. Both the inclusive and differential measurements are found to be compatible with the Standard Model predictions, at next-to-next-to-leading order in quantum chromodynamics perturbation theory with next-to-leading-order electroweak corrections. The measurements are interpreted in the framework of the Standard Model effective field theory, placing competitive bounds on several Wilson coefficients

    Search for third-generation vector-like leptons in pp collisions at s√ = 13 TeV with the ATLAS detector

    Get PDF
    A search for vector-like leptons in multilepton (two, three, or four-or-more electrons plus muons) final states with zero or more hadronic τ-lepton decays is presented. The search is performed using a dataset corresponding to an integrated luminosity of 139 fb−1 of proton-proton collisions at a centre-of-mass energy of 13 TeV recorded by the ATLAS detector at the LHC. To maximize the separation of signal and background, a machine-learning classifier is used. No excess of events is observed beyond the Standard Model expectation. Using a doublet vector-like lepton model, vector-like leptons coupling to third-generation Standard Model leptons are excluded in the mass range from 130 GeV to 900 GeV at the 95% confidence level, while the highest excluded mass is expected to be 970 GeV

    Inclusive-photon production and its dependence on photon isolation in pp collisions at s√ = 13 TeV using 139 fb−1 of ATLAS data

    Get PDF
    Measurements of differential cross sections are presented for inclusive isolated-photon production in pp collisions at a centre-of-mass energy of 13 TeV provided by the LHC and using 139 fb−1 of data recorded by the ATLAS experiment. The cross sections are measured as functions of the photon transverse energy in different regions of photon pseudorapidity. The photons are required to be isolated by means of a fixed-cone method with two different cone radii. The dependence of the inclusive-photon production on the photon isolation is investigated by measuring the fiducial cross sections as functions of the isolation-cone radius and the ratios of the differential cross sections with different radii in different regions of photon pseudorapidity. The results presented in this paper constitute an improvement with respect to those published by ATLAS earlier: the measurements are provided for different isolation radii and with a more granular segmentation in photon pseudorapidity that can be exploited in improving the determination of the proton parton distribution functions. These improvements provide a more in-depth test of the theoretical predictions. Next-to-leading-order QCD predictions from JETPHOX and SHERPA and next-to-next-to-leading-order QCD predictions from NNLOJET are compared to the measurements, using several parameterisations of the proton parton distribution functions. The measured cross sections are well described by the fixed-order QCD predictions within the experimental and theoretical uncertainties in most of the investigated phase-space region

    Measurements of Zγ+jets differential cross sections in pp collisions at s√ = 13 TeV with the ATLAS detector

    Get PDF
    Differential cross-section measurements of Zγ production in association with hadronic jets are presented, using the full 139 fb−1 dataset of s√ = 13 TeV proton–proton collisions collected by the ATLAS detector during Run 2 of the LHC. Distributions are measured using events in which the Z boson decays leptonically and the photon is usually radiated from an initial-state quark. Measurements are made in both one and two observables, including those sensitive to the hard scattering in the event and others which probe additional soft and collinear radiation. Different Standard Model predictions, from both parton-shower Monte Carlo simulation and fixed-order QCD calculations, are compared with the measurements. In general, good agreement is observed between data and predictions from MATRIX and MiNNLOPS, as well as next-to-leading-order predictions from MADGRAPH5_AMC@NLO and SHERPA

    Charged-hadron production in pp, p+Pb, Pb+Pb, and Xe+Xe collisions at sNN−−−√ = 5 TeV with the ATLAS detector at the LHC

    Get PDF
    This paper presents measurements of charged-hadron spectra obtained in pp, p+Pb, and Pb+Pb collisions at s√ or sNN−−−√ = 5.02 TeV, and in Xe+Xe collisions at sNN−−−√ = 5.44 TeV. The data recorded by the ATLAS detector at the LHC have total integrated luminosities of 25 pb−1, 28 nb−1, 0.50 nb−1, and 3 μb−1, respectively. The nuclear modification factors RpPb and RAA are obtained by comparing the spectra in heavy-ion and pp collisions in a wide range of charged-particle transverse momenta and pseudorapidity. The nuclear modification factor RpPb shows a moderate enhancement above unity with a maximum at pT ≈ 3 GeV; the enhancement is stronger in the Pb-going direction. The nuclear modification factors in both Pb+Pb and Xe+Xe collisions feature a significant, centrality-dependent suppression. They show a similar distinct pT-dependence with a local maximum at pT ≈ 2 GeV and a local minimum at pT ≈ 7 GeV. This dependence is more distinguishable in more central collisions. No significant |η|-dependence is found. A comprehensive comparison with several theoretical predictions is also provided. They typically describe RAA better in central collisions and in the pT range from about 10 to 100 GeV

    A search for new resonances in multiple final states with a high transverse momentum Z boson in s√ = 13 TeV pp collisions with the ATLAS detector

    Get PDF
    A generic search for resonances is performed with events containing a Z boson with transverse momentum greater than 100 GeV, decaying into e+e− or μ+μ−. The analysed data collected with the ATLAS detector in proton-proton collisions at a centre-of-mass energy of 13 TeV at the Large Hadron Collider correspond to an integrated luminosity of 139 fb−1. Two invariant mass distributions are examined for a localised excess relative to the expected Standard Model background in six independent event categories (and their inclusive sum) to increase the sensitivity. No significant excess is observed. Exclusion limits at 95% confidence level are derived for two cases: a model-independent interpretation of Gaussian-shaped resonances with the mass width between 3% and 10% of the resonance mass, and a specific heavy vector triplet model with the decay mode W′ → ZW → ℓℓqq

    Search for flavour-changing neutral current interactions of the top quark and the Higgs boson in events with a pair of τ-leptons in pp collisions at s√ = 13 TeV with the ATLAS detector

    Get PDF
    A search for flavour-changing neutral current (FCNC) tqH interactions involving a top quark, another up-type quark (q = u, c), and a Standard Model (SM) Higgs boson decaying into a τ-lepton pair (H → τ+τ−) is presented. The search is based on a dataset of pp collisions at s√ = 13 TeV that corresponds to an integrated luminosity of 139 fb−1 recorded with the ATLAS detector at the Large Hadron Collider. Two processes are considered: single top quark FCNC production in association with a Higgs boson (pp → tH), and top quark pair production in which one of top quarks decays into Wb and the other decays into qH through the FCNC interactions. The search selects events with two hadronically decaying τ-lepton candidates (τhad) or at least one τhad with an additional lepton (e, μ), as well as multiple jets. Event kinematics is used to separate signal from the background through a multivariate discriminant. A slight excess of data is observed with a significance of 2.3σ above the expected SM background, and 95% CL upper limits on the t → qH branching ratios are derived. The observed (expected) 95% CL upper limits set on the t → cH and t → uH branching ratios are 9.4×10−4(4.8+2.2−1.4×10−4) and 6.9×10−4(3.5+1.5−1.0×10−4), respectively. The corresponding combined observed (expected) upper limits on the dimension-6 operator Wilson coefficients in the effective tqH couplings are Ccϕ < 1.35 (0.97) and Cuϕ < 1.16 (0.82)

    Measurement of the charge asymmetry in top-quark pair production in association with a photon with the ATLAS experiment

    Get PDF
    A measurement of the charge asymmetry in top-quark pair (tt¯) production in association with a photon is presented. The measurement is performed in the single-lepton tt¯ decay channel using proton–proton collision data collected with the ATLAS detector at the Large Hadron Collider at CERN at a centre-of-massenergy of 13 TeV during the years 2015–2018, corresponding to an integrated luminosity of 139 fb−1. The charge asymmetry is obtained from the distribution of the difference of the absolute rapidities of the top quark and antiquark using a profile likelihood unfolding approach. It is measured to be AC = −0.003 ± 0.029 in agreement with the Standard Model expectation
    corecore