97 research outputs found

    Increased Na+/H+ antiport activity in the renal brush border membrane of SHR

    Get PDF
    Increased Na+/H+ antiport activity in the renal brush border membrane of SHR. Defect in renal salt excretion may play an important role in the pathogenesis of hypertension. We examined sodium (Na+) uptake by brush border membrane (BBM) vesicles of young (6 week old) spontaneously hypertensive rats (SHR) and normotensive Wistar-Kyoto rats (WKY) of the same age. SHR had lower urinary Na+ excretion (223.1 ± 9.3 vs. 266.3 ± 3.7 µEq/day/lOO g, N = 8, P < 0.01) and higher systolic blood pressure (98.9 ± 1.2 vs. 82.9 ± 1.8mm Hg, N = 8, P < 0.01) than WKY. BBM vesicle Na+ uptake, measured by rapid filtration technique, was higher in SHR when compared to WKY (1.44 ± 0.03 vs. 1.01 ± 0.06 nmol/mg/5 sec, N = 4, N < 0.01). This increase in Na+ influx was apparent only in the present of an outward-directed proton (H+) gradient and was abolished by 1mM amiloride. BBM permeability to H+ as assessed by acridine orange quenching was not different between SHR and WKY. Kinetic analyses of the amiloride-sensitive BBM Na+ uptake revealed a higher Vmax (2.13 ± 0.27 vs. 0.70 ± 0.30 nmol/mg/5 sec, N = 4, P < 0.01) and a higher km for Na+ (3.55 ± 0.32 vs. 1.23 ± 0.14mM, N = 4, P < 0.05) in SHR. These findings thus demonstrate an intrinsic derangement in BBM Na+ transport in young SHR which is characterized by increased Na+/H+ antiport activity. This alteration in antiport activity is not attributable to changes in membrane permeability to H+, and is characterized by higher Vmax and km. Similar reports of increased Na+/H+ antiport activity in other tissues of SHR suggest that a generalized membrane transport disorder may exist in this model of genetic hypertension

    Low- and Medium-Dispersion Spectropolarimetry of Nova V475 Sct (Nova Scuti 2003): Discovery of an Asymmetric High-Velocity Wind in a Moderately Fast Nova

    Full text link
    We present low-resolution (R∼90R\sim 90) and medium-resolution (R∼2500R\sim 2500) spectropolarimetry of Nova V475 Sct with the HBS instrument, mounted on the 0.91-m telescope at the Okayama Astrophysical Observatory, and with FOCAS, mounted on the 8.2-m Subaru telescope. We estimated the interstellar polarization toward the nova from the steady continuum polarization components and Hα\alpha line emission components. After subtracting the interstellar polarization component from the observations, we found that the Hα\alpha emission seen on 2003 October 7 was clearly polarized. In the polarized flux spectrum, the Hα\alpha emission had a distinct red wing extending to ∼+4900\sim +4900 km s−1^{-1} and a shoulder around +3500+3500 km s−1^{-1}, showing a constant position angle of linear polarization \theta_{\rm *}\simeq 155\arcdeg\pm 15\arcdeg. This suggests that the nova had an asymmetric outflow with a velocity of vwind≃3500v_{\rm wind}\simeq 3500 km s−1^{-1} or more, which is six times higher than the expansion velocity of the ionized shell at the same epoch. Such a high-velocity component has not previously been reported for a nova in the `moderately fast' speed class. Our observations suggest the occurrence of violent mass-loss activity in the nova binary system even during the common-envelope phase. The position angle of the polarization in the Hα\alpha wing is in good agreement with that of the continuum polarization found on 2003 September 26 (p∗≃0.4p_{\rm *}\simeq 0.4--0.6 %), which disappeared within the following 2 d. The uniformity of the PA between the continuum polarization and the wing polarization on October 7 suggests that the axis of the circumstellar asymmetry remained nearly constant during the period of our observations.Comment: 27 pages, 7 figures, accepted for publication in A

    Fast characterization of multiplexed single-electron pumps with machine learning

    Get PDF
    We present an efficient machine learning based automated framework for the fast tuning of single-electron pump devices into current quantization regimes. It uses a sparse measurement approach based on an iterative active learning algorithm to take targeted measurements in the gate voltage parameter space. When compared to conventional parameter scans, our automated framework allows us to decrease the number of measurement points by about an order of magnitude. This corresponds to an eightfold decrease in the time required to determine quantization errors, which are estimated via an exponential extrapolation of the first current plateau embedded into the algorithm. We show the robustness of the framework by characterizing 28 individual devices arranged in a GaAs/AlGaAs multiplexer array, which we use to identify a subset of devices suitable for parallel operation at communal gate voltages. The method opens up the possibility to efficiently scale the characterization of such multiplexed devices to a large number of pumps

    A claustrum in reptiles and its role in slow-wave sleep

    Get PDF
    The mammalian claustrum, owing to its widespread connectivity with other forebrain structures, has been hypothesized to mediate functions that range from decision-making to consciousness(1). Here we report that a homologue of the claustrum, identified by single-cell transcriptomics and viral tracing of connectivity, also exists in a reptile-the Australian bearded dragon Pogona vitticeps. In Pogona, the claustrum underlies the generation of sharp waves during slow-wave sleep. The sharp waves, together with superimposed high-frequency ripples(2), propagate to the entire neighbouring pallial dorsal ventricular ridge (DVR). Unilateral or bilateral lesions of the claustrum suppress the production of sharp-wave ripples during slow-wave sleep in a unilateral or bilateral manner, respectively, but do not affect the regular and rapidly alternating sleep rhythm that is characteristic of sleep in this species(3). The claustrum is thus not involved in the generation of the sleep rhythm itself. Tract tracing revealed that the reptilian claustrum projects widely to a variety of forebrain areas, including the cortex, and that it receives converging inputs from, among others, areas of the mid- and hindbrain that are known to be involved in wake-sleep control in mammals(4-6). Periodically modulating the concentration of serotonin in the claustrum, for example, caused a matching modulation of sharp-wave production there and in the neighbouring DVR. Using transcriptomic approaches, we also identified a claustrum in the turtle Trachemys scripta, a distant reptilian relative of lizards. The claustrum is therefore an ancient structure that was probably already present in the brain of the common vertebrate ancestor of reptiles and mammals. It may have an important role in the control of brain states owing to the ascending input it receives from the mid- and hindbrain, its widespread projections to the forebrain and its role in sharp-wave generation during slow-wave sleep

    Association between the SERPING1 Gene and Age-Related Macular Degeneration and Polypoidal Choroidal Vasculopathy in Japanese

    Get PDF
    PURPOSE: Recently, a complement component 1 inhibitor (SERPING1) gene polymorphism was identified as a novel risk factor for age-related macular degeneration (AMD) in Caucasians. We aimed to investigate whether variations in SERPING1 are associated with typical AMD or with polypoidal choroidal vasculopathy (PCV) in a Japanese population. METHODS: We performed a case-control study in a group of Japanese patients with typical AMD (n = 401) or PCV (n = 510) and in 2 independent control groups--336 cataract patients without age-related maculopathy and 1,194 healthy Japanese individuals. Differences in the observed genotypic distribution between the case and control groups were tested using chi-square test for trend. Age and gender were adjusted using logistic regression analysis. RESULTS: We targeted rs2511989 as the haplotype-tagging single nucleotide polymorphism (SNP) for the SERPING1 gene, which was reported to be associated with the risk of AMD in Caucasians. Although we compared the genotypic distributions of rs2511989 in typical AMD and PCV patients against 2 independent control groups (cataract patients and healthy Japanese individuals), SERPING1 rs2511989 was not significantly associated with typical AMD (P = 0.932 and 0.513, respectively) or PCV (P = 0.505 and 0.141, respectively). After correction for age and gender differences based on a logistic regression model, the difference in genotypic distributions remained insignificant (P>0.05). Our sample size had a statistical power of more than 90% to detect an association of a risk allele with an odds ratio reported in the original studies for rs2511989 for developing AMD. CONCLUSIONS: In the present study, we could not replicate the reported association between SERPING1 and either neovascular AMD or PCV in a Japanese population; thus, the results suggest that SERPING1 does not play a significant role in the risk of developing AMD or PCV in Japanese

    Determination of fungal activity in modified wood by means of micro-calorimetry and determination of total esterase activity

    Get PDF
    Beech and pine wood blocks were treated with 1,3-dimethylol-4,5-dihydroxyethylen urea (DMDHEU) to increasing weight percent gains (WPG). The resistance of the treated specimens against Trametes versicolor and Coniophora puteana, determined as mass loss, increased with increasing WPG of DMDHEU. Metabolic activity of the fungi in the wood blocks was assessed as total esterase activity (TEA) based on the hydrolysis of fluorescein diacetate and as heat or energy production determined by isothermal micro-calorimetry. Both methods revealed that the fungal activity was related with the WPG and the mass loss caused by the fungi. Still, fungal activity was detected even in wood blocks of the highest WPG and showed that the treatment was not toxic to the fungi. Energy production showed a higher consistency with the mass loss after decay than TEA; higher mass loss was more stringently reflected by higher heat production rate. Heat production did not proceed linearly, possibly due to the inhibition of fungal activity by an excess of carbon dioxide

    Dectin-2 recognises mannosylated O-antigens of human opportunistic pathogens and augments lipopolysaccharide activation of myeloid cells

    Get PDF
    Lipopolysaccharide (LPS) consists of a relatively conserved region of lipid A and core-oligosaccharide, and a highly variable region of O-antigen polysaccharide. While lipid A is known to bind to the toll-like receptor 4 (TLR4)-myeloid differentiation factor 2 (MD2) complex, the role of the O-antigen remains unclear. Here we report a novel molecular interaction between dendritic cell-associated C-type lectin-2 (Dectin-2) and the mannosylated O-antigen found in a human opportunistic pathogen Hafnia alvei PCM 1223, which has a repeating unit of [-Man-α1,3-Man-α1,2-Man-α1,2-Man-α1,2-Man-α1,3-]. H. alvei LPS induced higher levels of TNFα and IL-10 from mouse bone marrow-derived dendritic cells (BM-DCs), when compared to Salmonella enterica O66 LPS which has a repeat of [-Gal-α1,6-Gal-α1,4-[Glc-β1,3]GalNAc-α1,3-GalNAc-β1,3-]. In a cell-based reporter assay, Dectin-2 was shown to recognise H. alvei LPS. This binding was inhibited by mannosidase treatment of H. alvei LPS and by mutations in the carbohydrate-binding domain of Dectin-2, demonstrating that H. alvei LPS is a novel glycan ligand of Dectin-2. The enhanced cytokine production by H. alvei LPS was Dectin-2 dependent, as Dectin-2 knockout BM-DCs failed to do so. This receptor crosstalk between Dectin-2 and TLR4 involved events including spleen tyrosine kinase (Syk) activation and receptor juxtaposition. Furthermore, another mannosylated LPS from Escherichia coli O9a, also bound to Dectin-2 and augmented TLR4 activation of BM-DCs. Taken together, these data indicate that mannosylated O-antigens from several gram-negative bacteria augment TLR4 responses through interaction with Dectin-2

    Transcriptional Regulation of Rod Photoreceptor Homeostasis Revealed by In Vivo NRL Targetome Analysis

    Get PDF
    A stringent control of homeostasis is critical for functional maintenance and survival of neurons. In the mammalian retina, the basic motif leucine zipper transcription factor NRL determines rod versus cone photoreceptor cell fate and activates the expression of many rod-specific genes. Here, we report an integrated analysis of NRL-centered gene regulatory network by coupling chromatin immunoprecipitation followed by high-throughput sequencing (ChIP–Seq) data from Illumina and ABI platforms with global expression profiling and in vivo knockdown studies. We identified approximately 300 direct NRL target genes. Of these, 22 NRL targets are associated with human retinal dystrophies, whereas 95 mapped to regions of as yet uncloned retinal disease loci. In silico analysis of NRL ChIP–Seq peak sequences revealed an enrichment of distinct sets of transcription factor binding sites. Specifically, we discovered that genes involved in photoreceptor function include binding sites for both NRL and homeodomain protein CRX. Evaluation of 26 ChIP–Seq regions validated their enhancer functions in reporter assays. In vivo knockdown of 16 NRL target genes resulted in death or abnormal morphology of rod photoreceptors, suggesting their importance in maintaining retinal function. We also identified histone demethylase Kdm5b as a novel secondary node in NRL transcriptional hierarchy. Exon array analysis of flow-sorted photoreceptors in which Kdm5b was knocked down by shRNA indicated its role in regulating rod-expressed genes. Our studies identify candidate genes for retinal dystrophies, define cis-regulatory module(s) for photoreceptor-expressed genes and provide a framework for decoding transcriptional regulatory networks that dictate rod homeostasis

    Learning new sensorimotor contingencies:Effects of long-term use of sensory augmentation on the brain and conscious perception

    Get PDF
    Theories of embodied cognition propose that perception is shaped by sensory stimuli and by the actions of the organism. Following sensorimotor contingency theory, the mastery of lawful relations between own behavior and resulting changes in sensory signals, called sensorimotor contingencies, is constitutive of conscious perception. Sensorimotor contingency theory predicts that, after training, knowledge relating to new sensorimotor contingencies develops, leading to changes in the activation of sensorimotor systems, and concomitant changes in perception. In the present study, we spell out this hypothesis in detail and investigate whether it is possible to learn new sensorimotor contingencies by sensory augmentation. Specifically, we designed an fMRI compatible sensory augmentation device, the feelSpace belt, which gives orientation information about the direction of magnetic north via vibrotactile stimulation on the waist of participants. In a longitudinal study, participants trained with this belt for seven weeks in natural environment. Our EEG results indicate that training with the belt leads to changes in sleep architecture early in the training phase, compatible with the consolidation of procedural learning as well as increased sensorimotor processing and motor programming. The fMRI results suggest that training entails activity in sensory as well as higher motor centers and brain areas known to be involved in navigation. These neural changes are accompanied with changes in how space and the belt signal are perceived, as well as with increased trust in navigational ability. Thus, our data on physiological processes and subjective experiences are compatible with the hypothesis that new sensorimotor contingencies can be acquired using sensory augmentation

    Dectin-2 Deficiency Modulates Th1 Differentiation and Improves Wound Healing After Myocardial Infarction

    No full text
    • …
    corecore