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ABSTRACT

We present an efficient machine learning based automated framework for the fast tuning of single-electron pump devices into current quanti-
zation regimes. It uses a sparse measurement approach based on an iterative active learning algorithm to take targeted measurements in the
gate voltage parameter space. When compared to conventional parameter scans, our automated framework allows us to decrease the number
of measurement points by about an order of magnitude. This corresponds to an eightfold decrease in the time required to determine quanti-
zation errors, which are estimated via an exponential extrapolation of the first current plateau embedded into the algorithm. We show the
robustness of the framework by characterizing 28 individual devices arranged in a GaAs/AlGaAs multiplexer array, which we use to identify
a subset of devices suitable for parallel operation at communal gate voltages. The method opens up the possibility to efficiently scale the char-
acterization of such multiplexed devices to a large number of pumps.

VC 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (https://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0221387

Single-electron pumps are nanoscale devices that can produce
quantized macroscopic electric currents by clocking the transfer of
individual electrons to an external periodic drive.1–9 This device tech-
nology has been primarily developed to realize the practical implemen-
tation of the SI unit of current, the ampere, which, since 2019, is
defined by the fixed value of the elementary charge, e.10–12 The over-
arching goal is the experimental realization of devices generating a
quantized current according to the relationship I ¼ nef , where f is the
periodic drive frequency and n is an integer multiple of electrons trans-
ferred in a cycle.

The device operation requires a large degree of manual interven-
tion to find the appropriate operation conditions in a large space of
control parameters. With the increasing need of operating multiplexed
devices in a parallel configuration to generate usefully large quantized
currents,13–15 the manual tuning of control parameters for each device
becomes a significant bottleneck. Since each pump has slightly differ-
ent operating parameters, this severely limits the pace at which candi-
date devices can be screened.

To tackle this limitation, here, we present a machine learning
(ML) based framework that supports the automatic tuning of multiple
single-electron pumps. The use of ML for experimental control of
quantum devices is becoming increasingly popular, as it may unleash
significant speedups,16,17 for example, by using pre-trained predictive
models to reduce the number of required measurement points
informed by a Bayesian approach.18

Our framework automatically finds and characterizes the n ¼ 1
plateau in single-electron pumps as a function of control DC voltages
without requiring pre-training with existing pump map patterns. We
focus on the n ¼ 1 plateau since this is the region where the pumps
are typically operated to achieve the best current quantization.4,19 We
present an active learning (AL) sparse measurement (ALSM) frame-
work in which measurements are obtained iteratively in a data-driven
approach, which is designed to gain the necessary information from as
few measurements as possible. To this aim, the method needs to find
the boundaries of the n ¼ 1 plateau and acquire sufficient data to per-
form an exponential extrapolation from the boundary to the center of
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the plateau, a technique used to estimate the quantization error beyond
the measurement noise floor.20

We apply our protocol to a multiplexed array of GaAs/AlGaAs
quantum dot pump devices,21 driven at a frequency of f ¼ 0:2 GHz,
with a fixed external magnetic field of B ¼ 12:5 T [Fig. 1(b)]. The
devices periodically trap and transfer a fixed number of electrons
through a quantum dot (QD) with a single drive signal.22 Such peri-
odic drive is superimposed to a static DC voltage at the entrance bar-
rier of the QD (Vent) to precisely clock the operation of the pump,
while the exit barrier is kept at a fixed DC voltage (Vexit). Depending
on the setting for Vent and Vexit, the operation can be in the regime of
quantized transfers, taking place with specific number of electrons or
in the regime where the charge transfer is not quantized due to insuffi-
cient loading or incomplete emission.2 To quantify the deviation from
the n ¼ 1 quantization of the measured average electron number per
cycle, hni ¼ I=ef , we use the single-electron quantization error,
defined as g ¼ log 10ðjhni � 1jÞ, so that a lower value of g represents
better current quantization.

The operation of our ALSM framework in comparison with a
conventional line-scan method is presented in Fig. 1. We establish a
baseline with the traditional approach in which we scan Vexit for differ-
ent Vent values,

23 which allows us to extract a heat map of g over the
parameter space. The grid scan consists of an initial coarse voltage
scan over the full range of interest, followed by a higher resolution
scan in the region around the n ¼ 1 plateau. We denote this protocol

as plateau line scan (PLS). In Fig. 1(a), we show the measured PLS g,
which we denote as gM, as a function of Vexit and Vent for one pump.
One can identify the primary large n ¼ 1 plateau at the center of
Fig. 1(a) (dashed rectangle). Additionally, the secondary n ¼ 1 pla-
teaus obtained through incomplete emissions are visible above it. In
the rest of the manuscript, we focus on the automatic characterization
of the primary plateau.

A large fraction of the measurements in a PLS, for example, the
extended black regions, give redundant information. Our ALSM
framework is designed to minimize the number of measurements by
iteratively identifying the points that are expected to provide the largest
information gain by using a k-nearest neighbor (k-NN) regressor.24

This extracts a relationship between gate voltages and g at a low com-
putational cost25 and is, hence, ideally suited to be included in the data
acquisition loop. Its prediction for g at unmeasured points is given by
an average over already measured neighboring points, where neighbors
are weighted according to their inverse distance. At each iteration, we
choose new points to be measured according to the variance in g over
their k-NN neighbors, giving a proxy metric that determines the
uncertainty of the estimated g values. The first iteration consists of a
very coarse scan with Ncoarse measurements points over a large voltage
area, followed by small batches of Nmeas measurement points selected
in each AL iteration, balancing additional time overhead to perform
the k-NN prediction and data transfer vs keeping Nmeas small, for a
number of iterations, NAL. At each iteration, we identify the Ncandidates

FIG. 1. Schematic overview of the ALSM approach to characterize the n ¼ 1 plateau. (a) gM, acquired through a PLS, as a function of Vent and Vexit voltages, where a coarse
scan over a wider parameter range is followed by a fine line scan around the n ¼ 1 plateau (Vexit coarse stepsize is 0:005 V, fine stepsize is 0:0005 V, and Vent stepsize is
0:002 V); (b) scanning electron microscope (SEM) image of the 64-pump GaAs/AlGaAs multiplexer array; (c) variance of gM obtained with the k-NN active learning (AL)
method at the third iteration, where the black dots indicate the Nmeas ¼ 60 points that the k-NN method selects for measuring in the next iteration; (d) sparse measured gM
points after NAL ¼ 20 AL iterations; (e) interpolation of gM from measurements in (d) to a regular dense grid; the inner dashed curve encloses points with g below the measure-
ment noise floor gnoise, while the outer dashed curve delimits the area of the n ¼ 1 plateau (gmax ¼ �0:6); (f) ALSM and (i) PLS g as function of Vexit for Vent ¼ �0:464 V,
illustrating the exponential fit (blue lines) of the gM in (a) (PLS) and (e) (ALSM) for both sides of the plateau; the lower (upper) dashed line corresponds to gnoise (gmax); for
ALSM, the fit is performed to the 2D interpolation data (green curve) rather than the measurement points (red dots); (g) ALSM and (h) PLS final extrapolated quantization error,
gEðVexit; VentÞ, resulting from the exponential fits [blue lines in (f) and (i)] for the whole 2D area. The color scale presented in (a) is used for all 2D maps of g.
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points that have the largest k-NN variance on a fine evaluation grid as
potential candidates for a measurement in the next round and sample
the next measurement batch from these points with uniform sampling
probability. For the results presented here, we use Nmeas ¼ 60,
Ncandidates ¼ 100, Ncoarse ¼ 400, NAL ¼ 20, and k ¼ 4.26 Illustratively,
we show the variance in the third iteration of the AL cycle as a heat
map in Fig. 1(c), which also indicates the points selected for measure-
ment in the following iteration as black dots. A large variance is typi-
cally found when g varies strongly, or when measurement data are
mostly absent in some region. The 2D AL pump map for gM after NAL

iterations is shown in Fig. 1(d). The sparse measurement points are
predominantly placed at the boundary regions of the n ¼ 1 plateau.
When compared to the traditional PLS, which uses about 23 000 mea-
surements (10 736 for the coarse scan and 12495 for the fine scan), the
AL framework only performs 1600 measurements ðNAL � Nmeas

þNcoarse), a reduction of more than an order of magnitude.
After completion of the AL cycle, we perform a two-dimensional

piecewise linear interpolation between the measurement data,27–29

allowing us to produce data on the same fine grid around the n ¼ 1
region used in the PLS. The results are shown in Fig. 1(e). Within the
n ¼ 1 plateau, it results in a smooth function until the data become
noisy in the central area of the plateau with the highest current quanti-
zation accuracy. In these regions, the values of gM are markedly
affected by the measurement random uncertainty, given the limited
averaging used (20 ms). We assume that this corresponds to the mea-
surement noise floor for gM, and we denote it as gnoise. Note that our
AL method avoids taking a large number of measurements in this
region, which would be dominated by noise.

To obtain estimates beyond gnoise, we fit the g with g > gnoise
to an exponential approach of the current to the plateau from both
sides using a regression analysis [Figs. 1(i) and 1(f)], which corre-
sponds to a linear fit in g. For the PLS, we fit gM directly [Fig. 1(a)],
while for ALSM, we fit the interpolated values [Fig. 1(e)]. Such an
exponential function is a common phenomenological approximation
for the approach to the plateau regions, whose actual physical behav-
ior is masked by the limited measurement accuracy.20 We denote
the extrapolated quantization errors as gEðVexit;VentÞ. We determine
the value of gnoise via ML density analysis26,30,31 of the occurrence
frequency, pðgÞ, of g values across the full area of interest; pðgÞ
exhibits a peak where the data are dominated by noise, so that we
set gnoise at the position of the local minimum of pðgÞ above this
peak (see the supplementary material for details). We also set an
upper threshold of gmax ¼ �0:6 for the g included in the regression,
since we consider points with larger values to be outside n ¼ 1 pla-
teau region.

The obtained 2D function gEðVexit;VentÞ is the final output of
our pipeline, which is shown in Figs. 1(g) and 1(h) for PLS and ALSM,
respectively. The ALSM heat map reproduces the reference PLS result
well, and both have regions where the single-electron quantization
error reaches values of gE � �5. Whereas the PLS uses�23 000 single
point measurements resulting in a total time of �49 min on average,
the AL result is obtained with 1600 measurements, reducing the total
time required to characterize the plateau to �6 min. This total time is
made up of �5 min taken for the experimental data acquisition (con-
sisting of the bare measurement times as well as additional control and
communication overheads for interfacing with the experiment), an
additional time of less than 4 s in total for the identification of

measurement points with the k-NN algorithm, and a total post-
processing time of�38 s.

Having established the considerable speedup of our ALSM
approach and the qualitative agreement with the PLS, we evaluate
quantitatively the fidelity of the obtained gEðVexit;VentÞ when com-
pared with line scan results. To quantify the fidelity between a given
method and a reference measurement approach, we compute the
mean squared error,

MSEg ¼ 1
Np

XNp

l¼1

gE;l � gE;ref ;lð Þ2; (1)

where gE;l ¼ gEðVexit;l;Vent;lÞ, Np is the total number of grid points in
the final data, and the sum goes over all ðVexit;l;Vent;lÞ points in Figs.
1(g) and 1(h), where gE;ref ;l is smaller than zero. As reference data, we
use gE obtained for a separate single full dense line scan with Np

measurements.
In Fig. 2, we present the results averaged over five separate experi-

ments of AL and PLS measurements, with an approximately one and a
half hour time-delay between experiments of the same type. The MSEg

value for the repeated PLS data sets the lowest possible MSEg (dashed
line) and reflects the presence of measurement noise for the line-scan
itself as well as potential drifts of the device during measurements. The
orange curve is the MSEg for a random sequence of measurement
acquisition points within a given AL set of points. When increasing
NAL, MSEg initially decreases rapidly before it plateaus after about
NAL � 20.

FIG. 2. MSEg of the extrapolated single-electron quantization error gE as a function
of NAL, and where gE;ref for the reference in Eq. (1) is the data of a full dense scan
over the final grid. The underlying ALSM data are obtained with a random (shortest
jump) sequence measurement path for the orange (blue) curve. Solid lines and
shaded areas denote the mean and standard deviation over five different realiza-
tions for each setting, respectively. The inset shows the normalized histogram of the
step sizes taken in the random sequence and shortest jump paths. For comparison,
the horizontal dashed line shows the averaged MSEg for five analogous PLS.
MSEg where the AL measurement data at each AL round are replaced with the
data of the reference (PLS) measurement for the same ðVexit;l ; Vent;lÞ is shown in
green (purple).
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The fast early decrease in MSEg is due to the progressively larger
amount of information available for the interpolation between mea-
surement points when a larger number of data points are included in
the ALSM. When further increasing NAL beyond 20, the averaged
MSEg then converges to a value that is around a factor of two larger
than the reference value set by repeated PLS. For very large NAL, the
main difference to a PLS approach lies not in the number of measured
points but in the way these are acquired. Whereas traditional line scans
have a small constant step size between consecutive ðVexit;l;Vent;lÞ
points, DV ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

DV2
exit þ DV2

ent

p
, potentially large and irregular jumps

are taken in the ALSM approach. The histogram of the ALSM step
sizes (inset of Fig. 2) shows that such jumps are randomly distributed
over a range of about 0:2 V. We find that the averaged difference
between the measured ALSM, hni, and the reference measurements
increases as a function of DV , which is also more pronounced around
the edges of the plateau (see the supplemental material for details).
This is likely due to the fact that large voltage steps can cause system-
atic errors for a given time-delay between measurements, since the
measurement apparatus settling times for large DV increase. Such
memory effects can, for example, be due to the RC time constant of
the low-pass filters inserted in the gate voltage lines protecting the
gates from voltage surges, resulting in finite settling times when switch-
ing voltages. Note that also the sequential stepping used in the line
scans for the reference data may exhibit time correlations of the mea-
surement data resulting in a spurious parameter space correlation of
the data, which may be the cause for slight variations in positions of
the plateau edges. Part of the MSEg may be attributed to a spurious
correlation in the line scan data, which is not present in the ALSM
data due to the largely unbiased data acquisition path.

To mitigate the effects of insufficient voltage settling between
measurements, we, therefore, optimize the ALSM by ordering
the measurement sequence to approximately minimize DV between
measurements. As shown in the inset of Fig. 2, this optimization
results in a large reduction in the range of step sizes (blue histo-
gram). The resulting MSEg (blue curve) is significantly reduced
when compared to the random sequence results, and increasing NAL

systematically converges to a value just slightly higher than the PLS
baseline.

The question then arises how much of the MSEg (if any) is solely
introduced by the reduced set of measurement points acquired in the
ALSM when compared to a PLS, separating it out from the noise and
drift induced measurement fluctuations over time.

To this aim, we evaluate the MSEg for a post-processed dataset,
where we keep the measurement points ðVexit;l;Vent;lÞ from our ALSM
scan of the blue curve in Fig. 2, but where we replace the measurement
data itself with that of two different measurement sets:

• in the first, we replace the ALSM measurements for each of the
five scans with those of the corresponding PLS at the ALSM
ðVexit;l;Vent;lÞ points (purple curve in Fig. 2).

• in the second, we replace the ALSM measurements for each of
the scans with those of the reference line scan at the ALSM
ðVexit;l;Vent;lÞ points. This gives MSEg for a hypothetical experi-
ment where there are no differences in measurement values to
the reference measurements for all ðVexit;l;Vent;lÞ (green curve in
Fig. 2).

The MSEg for the first case (purple curve) systematically con-
verges to the PLS baseline at around 60 AL rounds. On the other hand,
for the second case (green curve), the MSEg keeps decreasing with
increasing NAL. This indicates that in the absence of measurement
fluctuations, the AL approach itself can reach arbitrary low target
MSEg.

We showcase the robustness of our ALSM framework by using it
to automatically characterize the n ¼ 1 plateau for pumps from a mul-
tiplexed chip with 64 devices. Separate line scans show that a subset of
28 pumps exhibit a plateau region, whereas the remaining ones do not
exhibit well-defined quantization.21 The plateaus extracted with our
ALSM approach are shown in Fig. 3(a). Our approach is able to extract
a characteristic pump heat map for all the devices with reliable single-
electron operation, highlighting the ability to faithfully find this “nee-
dle in the haystack” with only 1600 measurements per pump. Our
algorithm estimates lowest quantization errors as low as gE � �8:7

FIG. 3. (a) Active learning gEðVexit; VentÞ of 28 pumps of the multiplexed chip; voltage ranges are the same for all maps, and shown in panels (b) and (b) are the number of
overlapping pump regions with a quantization error gE < 10�3, showing that a maximum of five pumps could be operated in parallel with common gate voltages to within this
quantization error.
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across the 28 pumps. In Fig. 3(b), we show how many pumps exhibit
gE < 10�3 for a given ðVexit;VentÞ parameter setting. It allows us to
select both the parameter settings and the specific pumps that can be
operated in parallel to reach this target g below the identified noise
floor on each pump. For this multiplexer and measurement settings,
our method predicts that a maximum of five pumps can be operated
in parallel over extended parameter regions to obtain gE < 10�3 for
each. This is the result of a trade-off. In fact, setting more stringent
target quantization errors would lead to smaller suitable areas of
operation for individual pumps, and this would, in turn, drastically
reduce areas of overlap among pumps. Note that the use of commu-
nal gate voltages for parallel operation is needed for multiplexer
device architectures, for which some gate electrodes are shared among
multiple pumps.21 For devices, where ðVexit;VentÞ can be set indepen-
dently for each pump or for devices with communal gate voltages
with an increased number of pumps, one can expect that a larger
number of pumps could be operated in parallel for a given quantiza-
tion accuracy. Our approach allows for fast characterization and opti-
mization of the ðVexit;VentÞ parameters for a large number of pumps
to maximize the number of pumps that can be operated in parallel to
within a target g.

In conclusion, we have developed and demonstrated an auto-
matic machine learning based active learning sparse measurement
protocol to characterize single-electron pumps for metrological appli-
cations. Our results enable time-efficient measurements by selecting
meaningful data points to build quantization maps, as opposed to the
conventional data acquisition approach relying on comprehensive
exploration of the voltage parameter space by line scans. Our approach
lends itself to be extended to other control parameter dimensions, such
as drive signal amplitude and frequency, or magnetic field. Although
our application focuses on the characterization of the first plateau
region, the pipeline is directly transferable to higher level plateaus,
making it a general prototype for the fully automated tuning of single-
charge pumps. The demonstration that this AL-based framework can
also be used for a large array of devices underlines its ability to stream-
line the experimental operation of single-electron pumping experi-
ments toward parallelization.

See the supplementary material for details of the extrapolation
beyond the noise floor and analysis of measurement errors as a func-
tion of voltage step size.
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