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LPS consists of a relatively conserved region of lipid A and
core oligosaccharide and a highly variable region of O-antigen
polysaccharide. Whereas lipid A is known to bind to the Toll-
like receptor 4 (TLR4)-myeloid differentiation factor 2 (MD2)
complex, the role of the O-antigen remains unclear. Here we
report a novel molecular interaction between dendritic cell-as-
sociated C-type lectin-2 (Dectin-2) and mannosylated O-anti-
gen found in a human opportunistic pathogen, Hafnia alvei
PCM 1223, which has a repeating unit of [-Man-�1,3-Man-
�1,2-Man-�1,2-Man-�1,2-Man-�1,3-]. H. alvei LPS induced
higher levels of TNF� and IL-10 from mouse bone marrow-de-
rived dendritic cells (BM-DCs), when compared with Salmo-
nella enterica O66 LPS, which has a repeat of [-Gal-�1,6-Gal-
�1,4-[Glc-�1,3]GalNAc-�1,3-GalNAc-�1,3-]. In a cell-based
reporter assay, Dectin-2 was shown to recognize H. alvei LPS.
This binding was inhibited by mannosidase treatment of
H. alvei LPS and by mutations in the carbohydrate-binding
domain of Dectin-2, demonstrating that H. alvei LPS is a novel
glycan ligand of Dectin-2. The enhanced cytokine production by
H. alvei LPS was Dectin-2-dependent, because Dectin-2 knock-
out BM-DCs failed to do so. This receptor cross-talk between
Dectin-2 and TLR4 involved events including spleen tyrosine
kinase (Syk) activation and receptor juxtaposition. Further-
more, another mannosylated LPS from Escherichia coli O9a also
bound to Dectin-2 and augmented TLR4 activation of BM-DCs.
Taken together, these data indicate that mannosylated O-anti-
gens from several Gram-negative bacteria augment TLR4
responses through interaction with Dectin-2.

LPS consists of the relatively conserved region of lipid A and
core oligosaccharide and the highly variable region of O-anti-
gen polysaccharide (1). The conserved lipid A is recognized by
the Toll-like receptor 4 (TLR4)2-myeloid differentiation factor
2 (MD2) receptor complex expressed on innate immune cells,
such as dendritic cells (DCs) and macrophages (2). Lipid A
binding induces TLR4 dimerization and activates further
downstream signaling, leading to inflammation-associated
expression of genes, such as cytokines and chemokines (3). In
addition, previous studies have suggested a regulatory role of
the variable O-antigen in LPS activation. For instance, in the
LPS-induced sepsis mouse model, disease severity varies,
depending on the nature of the O-antigen glycan structure (4).
An in vitro mechanistic study suggests that the O-antigen
affects the kinetics of cytokine production from macrophages
(5). Further, a recent report suggests a contribution of O-anti-
gen to the pain occurring during the LPS-induced shock (6).

Glycan-binding proteins (lectins) expressed on the cell sur-
face of innate immune cells have been reported to recognize
O-antigens, and the binding may influence TLR4 signaling (7).
For example, the macrophage mannose receptor binds to LPS
from various Klebsiella pneumoniae strains (8); the dendritic
cell-specific intercellular adhesion molecule-3-grabbing non-
integrin (DC-SIGN) binds to LPS isolated from Helicobacter
pylori (9); and the Sialic acid binding Ig-like lectin-7 (Siglec-7)
binds to lipooligosaccharide of Campylobacter jejuni (10).

Dendritic cell-associated C-type lectin-2 (Dectin-2) is a sin-
gle transmembrane lectin expressed on various myeloid cells in
mice and humans, including DCs, monocytes, and macro-
phages (11–14). Dectin-2 recognizes �-linked mannose struc-
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ture as a glycan ligand and elicits various cellular responses,
including cytokine production (15, 16), cell surface marker
induction (17), ligand endocytosis (18), and antigen presenta-
tion to CD8T cells (19). The Dectin-2 signaling pathway
involves the adaptor molecule Fc receptor common �-chain
(FcR�) that harbors the immunoreceptor tyrosine-based acti-
vation motif (ITAM) in the cytoplasmic domain (16 –18). Upon
Dectin-2 binding to the glycan ligands, the ITAM motif gets
phosphorylated and induces spleen tyrosine kinase (Syk) acti-
vation (15, 16). Although glycan ligands of Dectin-2 have been
identified in various microbes, including Candida albicans,
Malassezia pachydermatis, and mycobacteria (16, 17, 20, 21),
the nature of Dectin-2 ligands from Gram-negative bacteria
remains unclear.

According to the microbial polysaccharide database (1),
�-linked mannose containing O-antigens are found in various
Gram-negative bacterial species, such as Citrobacter braakii; Cit-
robacter werkmanii O21 (22, 23); Escherichia coli O8, O9, O68,
and K12 (24–27); K. pneumoniae O3 and O5 (24, 25); Hafnia alvei
PCM 1223 (28); and Serratia marcescens O28 (29). Some of these
bacteria can cause nosocomial infections in lung and urinary tract
(30–34). Of note, 11% of K. pneumoniae clinical isolates were
shown to be serotype O3 and O5 (35). Therefore, it is of great
importance to determine whether Dectin-2 recognizes the man-
nosylated O-antigens.

In this study, we investigated the contribution of the �-linked
mannosylated O-antigen in the LPS activation of myeloid cells.
We compared DC response and Dectin-2 binding to the man-
nosylated LPS (Man-LPS) from H. alvei PCM 1223 and E. coli
O9a with the LPS from Salmonella enterica O66 or K. pneumo-
nia O1, which has the galactosylated O-antigen (Gal-LPS) (Fig.
1A). We observed binding between Man-LPS and Dectin-2,
which led to augmentation of TLR4 response in mouse DCs and
human monocytes. These results demonstrate a novel role of
mannosylated O-antigen in activation of TLR4 in myeloid cells.

Results

Man-LPS Produced a Higher Level of TNF� and IL-10 from
Bone Marrow-derived DCs (BM-DCs) than Gal-LPS—To
address the contribution of O-antigen in the LPS activation of
innate immune cells, we tested two structurally defined LPS.
The Man-LPS from H. alvei PCM 1223 is built of [-Man-�1,3-
Man-�1,2-Man-�1,2-Man-�1,2-Man-�1,3-] repeating units
(28), whereas Gal-LPS from S. enterica O66 contains [-Gal-�1,6-
Gal-�1,4-[Glc-�1,3]-GalNAc-�1,3-GalNAc-�1,3-] repeating units
(Fig. 1A) (36). The core oligosaccharide and lipid A of these two
LPSs are relatively conserved (37– 40). TLR4 activation by these
two types of LPS was first measured using the TLR4-MD2-
expressing HEK293 reporter cells, with Man-LPS being 4-fold
more potent as compared with Gal-LPS (Fig. 1B). Based on this
result, we standardized TLR4 activation by using a 4-fold higher
concentration of Gal-LPS compared with Man-LPS in the rest
of the study. Under these conditions, Man-LPS induced 2-fold
more TNF� and IL-10 from mouse BM-DCs than Gal-LPS (Fig.
1C). Man and Gal-LPS induced the co-stimulatory molecule
CD80 and mouse MHC class II molecule I-Ab to a similar extent
(data not shown).

Man-LPS Is a Novel Glycan Ligand of Dectin-2—Because
O-antigen of Man-LPS consists of �-linked mannose, a glycan
ligand of Dectin-2, we tested Dectin-2 binding to the purified
LPS in a cell-based reporter assay, in which the lectin-glycan
interaction is monitored as �-galactosidase expression (41).
The Dectin-2 BWZ cells were cultured in a 96-well plate coated
with Man and Gal-LPS. In this assay, Dectin-2 bound to Man-
LPS but not to Gal-LPS (Fig. 2A). No binding was observed
between mock BWZ cells and LPS, indicating specific binding
of Dectin-2 to Man-LPS (Fig. 2A). In addition, plant-derived
galactan, �-linked mannan (Fig. 2B), and LPS from K. pneu-
moniae O1 (Fig. 2C), which has a homopolymeric Gal O-anti-
gen (42), failed to bind to Dectin-2, confirming that Dectin-2
binding to Man-LPS is sugar composition- and linkage-specific

FIGURE 1. Comparison of BM-DC response to Man and Gal-LPS. A, two LPS used in this study are shown. Man-LPS from H. alvei PCM 1223 has a mannosylated
repeating unit, whereas Gal-LPS from S. enterica O66 has a galactosylated repeat. B, HEK293 cells stably transfected with TLR4-MD2 were cultured in the
presence of LPS. The TLR4 activation was monitored by measuring alkaline phosphatase activity using the substrate. C, mouse BM-DCs were stimulated with
1 �g/ml Man-LPS or 4 �g/ml Gal-LPS for 7 h. The amount of TNF� and IL-10 in the culture supernatant was analyzed by ELISA. Data are representative of three
independent experiments with similar results. Error bars, S.D. Statistical analyses were performed by one-way ANOVA followed by Tukey’s test. ***, p � 0.001.
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rather than nonspecific binding to homopolymeric carbohy-
drate polymer. Furthermore, the lipid A isolated from Man-LPS
failed to bind to Dectin-2 (Fig. 2D), and treatment of Man-LPS
with �-mannosidase inhibited the binding (Fig. 2E), suggesting
that binding was mediated by the mannosylated O-antigen of
Man-LPS. To assess whether the binding is through the carbo-
hydrate-recognition domain of Dectin-2, we compared the
binding of WT Dectin-2 and the QPD mutant that no longer
recognizes mannose (17, 43). As shown in Fig. 2F, the binding
was significantly reduced by the mutations. These results dem-
onstrate that Dectin-2 recognizes the �-linked mannosylated
O-antigen of H. alvei LPS. Because mannosylated O-antigen is
found in other Gram-negative bacteria, including E. coli O9a
(44), we tested whether Dectin-2 recognizes mannosylated

O-antigen from E. coli O9a. We found that E. coli O9a LPS
bound to Dectin-2, whereas the rough mutant LPS, which lacks
the O-antigen (45), failed (Fig. 2G). We also tested the binding
of Dectin-2 to H. alvei in the reporter assay. Dectin-2 bound to
paraformaldehyde (PFA)-fixed H. alvei, whereas the QPD
mutant did not (Fig. 2H), suggesting the role of Dectin-2 as a
recognition receptor for Gram-negative bacteria with �-linked
mannosylated O-antigens.

Man-LPS Activation Involves a Synergy between Dectin-2 and
TLR4 —To assess the involvement of Dectin-2 in Man-LPS
activation of immune cells, we generated BM-DCs from Dec-
tin-2 KO mice (Fig. 3A). In contrast to WT BM-DCs, Dectin-2
KO BM-DCs were unable to enhance TNF� and IL-10 produc-
tion in response to Man-LPS (Fig. 3B), indicating that Dectin-2

FIGURE 2. Dectin-2 recognizes H. alvei O-antigen. A–D, mouse Dectin-2 or mock BWZ cells were cultured for 16 h in the 96-well plate coated with purified LPS,
plant-derived polysaccharides, lipid A, or nothing. The �-galactosidase activity was measured using the substrate. The data are expressed as the absorbance
at 570 nm subtracted with the reference absorbance at 630 nm. E, the Man-LPS-coated plate was incubated with the �1-2,3-mannosidase at 37 °C for 14 h. The
wells were washed with PBS, and the Dectin-2 reporter cells were added and analyzed as in A. F–H, BWZ cells expressing WT Dectin-2 or the QPD mutant were
cultured in the presence of Man-LPS, E. coli O9a LPS, and the rough mutant LPS or 1.0 � 106 of PFA-fixed H. alvei PCM 1223. The binding was monitored as in
A. Data are representative of three independent experiments with similar results. Error bars, S.D. Statistical analyses were performed by one-way ANOVA
followed by Tukey’s test (A–D, G, and H) or Student’s t test (E and F). *, p � 0.05; **, p � 0.01; ***, p � 0.001; n.s., not statistically significant.
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augments TLR4 activation by Man-LPS. This was reproducible
when we used another Gal-LPS from K. pneumoniae O1 (data
not shown). Of note, in the TLR4 KO BM-DCs, neither Man
nor Gal-LPS induced the cytokine production (Fig. 3B), sug-
gesting that the mannosylated O-antigen is not sufficient to
activate Dectin-2 in the absence of TLR4. Similarly, Dectin-2-
dependent enhancement in TNF� production by BM-DCs was
seen in response to the WT E. coli O9a LPS but not to the rough
LPS (Fig. 3C). IL-10 response showed a similar tendency, but
this was not statistically significant between WT and rough LPS
(Fig. 3C). The TLR4 reactivity of WT and rough LPS was indis-
tinguishable (data not shown). We also assessed the contribu-
tion of Dectin-2 to the DC response toward H. alvei. IL-10 pro-
duction in response to H. alvei was Dectin-2-dependent,
suggesting a regulatory role of Dectin-2 in the recognition of
H. alvei (Fig. 3D). Although TNF� production in response to
Man-LPS was enhanced by Dectin-2 (Fig. 3B), the TNF�
response to H. alvei was similar between WT and Dectin-2 KO
BM-DCs (Fig. 3D), suggesting alternative molecular mecha-
nisms leading to TNF� production, such as TLR2 that recog-
nizes bacterial cell wall components (46).

The Receptor Synergy Is Syk-dependent and Requires Receptor
Juxtaposition—To investigate the intracellular signaling events
involved in this process, we assessed the impact of Man-LPS on
Syk, a key molecule in the Dectin-2 pathway (15, 16). Syk was
found to be phosphorylated upon stimulation of BM-DCs by
Man-LPS but not Gal-LPS (Fig. 4A). Furthermore, treatment of
BM-DCs with the Syk inhibitor R406 abrogated the augmented
cytokine production in response to Man-LPS (Fig. 4B), demon-
strating Syk-dependent synergy between Dectin-2 and TLR4.
Next, we assessed the impact of the Syk activation by Man-LPS
on the activation of NF-�B and MAPK pathways, hallmark of
TLR4 activation (3). The phosphorylation of p38 and degrada-
tion of I�B was indistinguishable between Man and Gal-LPS,
respectively, suggesting that other signaling pathways are mod-
ified by Syk activation through Dectin-2 (Fig. 4C).

Because Man-LPS has the binding epitopes for both Dectin-2
and TLR4, we hypothesized that receptor juxtaposition by
Man-LPS is the mechanism underpinning the synergy. To test
this hypothesis, BM-DCs were stimulated with Gal-LPS as a
TLR4 ligand in the presence of yeast �-linked mannan, a known
Dectin-2 ligand. As shown in Fig. 5, the addition of yeast man-
nan was not sufficient to enhance cytokine production, com-
pared with the Gal-LPS, demonstrating that receptor juxtapo-
sition is required to achieve synergy.

Human Monocytes Recapitulate the Enhanced Cytokine Pro-
duction in Response to Man-LPS—Man-LPS activation was also
tested on human myeloid cells expressing Dectin-2. We found
that human peripheral blood monocytes expressed Dectin-2 at
a high level, and blood DCs and monocyte-derived DCs (Mo-
DCs) expressed at a negligible level (Fig. 6A), which is consis-
tent with previous reports analyzing human Dectin-2 mRNA

FIGURE 3. The binding of Dectin-2 to the O-antigen augments BM-DC
response. A, Dectin-2 expression on mouse BM-DCs generated from WT and
Dectin-2 KO mice. Cells from in vitro culture of bone marrow cells were stained
with anti-Dectin-2 (black) or isotype (gray) control Ab. The stained cells were
analyzed by flow cytometry. B and C, BM-DCs from the indicated background
were incubated with the LPS and analyzed for cytokine production as in Fig.

1C. D, BM-DCs were incubated with 1.0 � 106 of PFA-fixed H. alvei PCM 1223
for 7 h. Cytokine production was monitored by ELISA as in Fig. 1C. Data are
representative of three independent experiments with similar results. Error
bars, S.D. Statistical analyses were performed by one-way ANOVA followed by
Tukey’s test *, p � 0.05; ***, p � 0.001; n.s., not statistically significant.
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expression among human immune cells (11, 12). Human
monocytes produced higher levels of TNF� and IL-10 in
response to Man-LPS compared with Gal-LPS (Fig. 6B). The
anti-Dectin-2 antibody (Ab), however, failed to block the
enhanced cytokine production (data not shown), implying the
potential involvement of other lectins.

Discussion

In line with our findings, recent reports show interactions
between mammalian lectins and O-antigens. Several strains of
H. alvei are targeted by Ficolin-3, a complement-associated sol-
uble lectin (47, 48). Langerin, a C-type lectin specific to
�-linked mannose, is suggested to recognize the internal Man-
�1,2-Man repeat found in O-antigens from E. coli O106 and
Shigella boydii B10 in the pathogen glycan array (49), implying
that C-type lectins are capable of interacting with the internal
glycan epitopes. At this moment, it is unclear whether the bind-
ing of Dectin-2 to the mannosylated O-antigen is mediated by
the terminal mannose residue at the non-reducing end, the
internal �-linked mannose repeats, or both.

Our findings have identified novel carbohydrate ligands of
Dectin-2 and provided a deeper understanding in host-microbe

interactions mediated by Dectin-2. Previous studies demon-
strate that Dectin-2 plays a key role in fungal and mycobacterial
infection and house dust allergy (14, 16, 17, 50). In this report,
we have revealed a group of Gram-negative bacteria recognized
by Dectin-2. LPS from H. alvei PCM 1223 and E. coli O9a
bound to Dectin-2 and enhanced TLR4 responses of BM-DCs
in a Dectin-2-dependent manner, suggesting a novel role of
Dectin-2 in the interaction between host and Gram-negative
bacteria bearing �-linked mannosylated O-antigen. Of note,
H. alvei LPS was more potent than E. coli O9a LPS in Dectin-2
engagement in BM-DCs (Fig. 3, B and C); this may be due to the

FIGURE 4. Syk-dependent BM-DC activation by Man-LPS. A, BM-DCs were
stimulated with 1 �g/ml Man-LPS or 4 �g/ml Gal-LPS for the indicated time
period. The stimulated cells were lysed and subjected to SDS-PAGE analysis.
The proteins were transferred onto nitrocellulose membrane and analyzed
for both phosphorylation and expression level of Syk. B, BM-DCs were stimu-
lated with LPS in the presence or absence of the Syk inhibitor R406. Cytokine
production was monitored by ELISA as in Fig. 1C. C, phosphorylation of p38
and degradation of I�B in response to LPS were analyzed as in A. Data are
representative of three independent experiments with similar results. Error
bars, S.D. Statistical analyses were performed by one-way ANOVA followed by
Tukey’s test. ***, p � 0.001; n.s., not statistically significant.

FIGURE 5. Co-stimulation of BM-DCs with Gal-LPS and yeast mannan
failed to enhance cytokine production. BM-DCs were stimulated with the
indicated stimuli, and cytokine production was analyzed as described in the
legend to Fig. 1C. Data are representative of three independent experiments
with similar results. Error bars, S.D. Statistical analyses were performed by
one-way ANOVA followed by Tukey’s test. **, p � 0.01; ***, p � 0.001; n.s., not
statistically significant.
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different O-chain length because the sugar structure is identical
between these two bacteria (44).

Our findings that Dectin-2 interacts with TLR4 upon Man-
LPS stimulation strengthen the proposed model that lectins are
capable of regulating TLR pathways in various ways. For
instance, stimulation of DCs and macrophages with �-glucan in
the presence of various TLR ligands allowed enhancement of
TNF� and IL-10 production (51–53). Co-stimulation of DCs
with DC-SIGN and TLR ligands selectively enhances IL-10 pro-
duction (54, 55). Although these studies clearly demonstrate
the cross-talk between C-type lectins and TLRs, the molecular
mechanisms underpinning such receptor cross-talk remain
elusive. One potential mechanism is receptor juxtaposition, as
previously proposed for the ITAM-coupled lectin Siglec-H;
positioning Siglec-H in close proximity to TLR9 in the endo-
some would enhance the TLR9 activation (56). Here we showed
that such synergy was observed between Dectin-2 and TLR4.
Whether this is a common strategy for the modulation of TLR
functions by membrane-bound lectins remains to be
demonstrated.

We have identified Syk as a key molecule for cross-talk
between Dectin-2 and TLR4. Syk has been proposed as a regu-
lator of TLR4 signaling. Several studies have reported that in
DCs and macrophages, Syk gets phosphorylated upon LPS
stimulation (57), and Syk deficiency results in enhanced TNF�
and reduced IL-10 (58). Of note, most of the studies employed
LPS from E. coli O111:B4 (59). In our study, because Gal-LPS
failed to induce phosphorylation of Syk, it is likely that O-anti-
gen structure influences Syk activation. Thus, to address the
role of Syk in TLR4 signaling, it would be essential to test
whether reported Syk activation by E. coli O111 LPS involves
Dectin-2 or other lectins.

Although our findings have revealed a novel function of man-
nosylated O-antigen in LPS activation of innate immune cells
(Fig. 7), the role of core oligosaccharides in the TLR4 activation
remains elusive. In this regard, SIGNR1 is reported to recognize
the core oligosaccharide of E. coli LPS and augment cytokine
responses (60). Further studies of lectin recognition of both
highly variable O-antigen and the conserved core oligosaccha-
ride are warranted to gain a better understanding of LPS recog-
nition by innate immune cells.

Experimental Procedures

Mice—C57BL/6J (WT), TLR4 KO (a gift from Dr. J. S. Frick,
University of Tuebingen), and Dectin-2 KO mice were main-
tained in the specific pathogen-free animal facilities at the Uni-
versity of East Anglia, University of Tuebingen, and Chiba Uni-
versity, respectively. Animal use in this study was in accordance
with United Kingdom Home Office guidelines, the Regier-
ungspraesidium Tuebingen, and the ethics committee of Chiba
University.

FIGURE 6. Human blood monocytes recapitulate the enhanced cytokine
response to Man-LPS. A, peripheral blood mononuclear cells or Mo-DCs
were stained with anti-Dectin-2 (black) or isotype (gray) control Ab together
with the cell surface markers for each lineage. Human blood monocytes
(PI�CD14�), blood DCs (PI�CD3�CD14�CD16�CD19�CD20�CD56�CD11c�

HLA-DR�), and Mo-DCs (PI�CD11c�) were gated in the analysis. B, human
blood monocytes were stimulated with the LPS as described in the legend to
Fig. 1C. Cytokine production was monitored by ELISA. Data are representative
of three independent experiments with similar results (A) and the results from
three individuals (B). Error bars, S.D. Statistical analyses were performed by
one-way ANOVA followed by Tukey’s test. *, p � 0.05; **, p � 0.01; ***, p �
0.001.

FIGURE 7. Role of mannosylated O-antigen in LPS activation of immune
cells. Man-LPS is recognized by both Dectin-2 and TLR4, leading to activation
of Syk. The Syk activation results in enhanced TLR4 responses, such as cyto-
kine production. The signaling pathways affected by Syk are yet to be
determined.
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Reagents—All of the chemical reagents were obtained from
Sigma-Aldrich, unless otherwise stated. Abs used in the flow
cytometry were obtained from Biolegend, unless otherwise
indicated, and include those against mouse CD80 (GL-1), I-Ab

(AF6 –120.1), human Dectin-2 (R&D systems, 545943), CD3
(OKT3), CD14 (M5E2), CD16 (3G8), CD19 (HIB19), CD20
(2H7), CD56 (HCD56), CD11c (3.9), and HLA-DR (L243). The
Abs used for Western blot were obtained from Cell Signaling
and include Syk (D3Z1E), phospho-Syk (C87C1), p38 (D13E1),
phospho-p38 (D3F9), IkB (rabbit polyclonal Ab), and �-actin
(13E5). LPS from H. alvei PCM 1223, S. enterica O66, K. pneu-
moniae O1, E. coli O9a, and the rough mutant were isolated as
described previously (28, 42, 45, 61, 62). The lipid A from the Man-
LPS was isolated by hydrolysis as described previously (28). Galac-
tan and �-linked mannans were from Megazyme. The Syk inhibi-
tor R406 was purchased from InvivoGen. ELISA kits for mouse
and human TNF� and IL-10 were from Biolegend and were used
according to the manufacturer’s instructions.

Cells and Bacteria—BWZ.36 cells harboring IL-2-driven
�-galactosidase cassette (63) and the retrovirus-packaging cell
line Plat-E were obtained from Dr. N. Shastri (University of
California, Berkeley, CA) and Dr. T. Kitamura (University of
Tokyo), respectively, and maintained as described before (64).
H. alvei PCM 1223 was obtained from the Polish Collection of
Microorganisms and cultured in Luria broth at 37 °C under
shaking at 200 rpm (Innova 44 incubator, New Brunswick
Scientific).

Flow Cytometry—Cells were washed with Hanks’ balanced
saline solution (Lonza) containing 0.1% BSA, 2 mM EDTA
(FACS buffer); blocked with anti-mouse Fc block Ab (Bioleg-
end) for 5 min at 25 °C; and stained with the Abs for 30 min at
4 °C. Stained cells were washed once with FACS buffer and
analyzed by Fortessa (BD Biosciences). For dead cell exclusion,
propidium iodide (PI) was added to the sample at a final con-
centration of 0.33 �g/ml before the analysis. Acquired data
were analyzed with FlowJo (Tree Star).

TLR4 Reporter Assay—The TLR4 reporter assay was per-
formed using the HEK-Blue human TLR4 reporter cells that
produce alkaline phosphatase in response to LPS, according to
the manufacturer’s instructions (InvivoGen). Briefly, the TLR4-
HEK293 cells were cultured in the HEK-Blue detection
medium containing the substrate for alkaline phosphatase in
the presence of the LPS for 20 h. After incubation, the absor-
bance at 620 nm was measured.

Establishment of Mouse Dectin-2 Reporter Cells—The Dec-
tin-2 reporter cells were established as described previously
(64). Briefly, the extracellular domain of mouse Dectin-2
(Gln42–Leu209) was cloned into the retrovirus vector pMXs-
IRES-EGFP-Ly49A-CD3� harboring the transmembrane region
of the mouse Ly49A and the cytoplasmic domain of the mouse
CD3� (64). The pMXs-IRES-EGFP-Dectin-2-Ly49A-CD3�
vector and the parental vector were used to establish Dectin-2
and mock BWZ cells, respectively, for the retrovirus transduc-
tion using Plat-E cells (65). To establish reporter cells express-
ing the carbohydrate-binding incompetent mutant of Dectin-2
(Dectin-2QPD), two missense mutations (G502C and A508G) in
the mannose recognition domain were introduced, which
results in amino acid substitutions E168Q and N170D. The

DNA fragment encoding the extracellular domain of Dectin-2
with the two missense mutations was synthesized (GenScript)
and cloned into the pMXs-IRES-EGFP-Ly49A-CD3� vector
and used as described above.

Dectin-2 Reporter Assay—A reporter assay was performed as
described previously (64). Briefly, the 96-well flat-bottom
ELISA plate (MaxiSorp, Thermo Scientific Nunc) was coated
with 100 �l containing 40 ng of LPS or polysaccharides in 100
mM sodium bicarbonate buffer, pH 9.5, for 16 h at 4 °C. Dec-
tin-2 or mock BWZ cells were then cultured in the well, and
�-galactosidase activity was monitored as described previously
(64). For the mannosidase treatment, a 96-well plate was coated
with 1.6 ng of Man-LPS. After discarding the solution, wells
were washed once with 200 �l of PBS and blocked with 100 �l of
4% BSA in PBS for 1 h at 25 °C. Blocked wells were washed, and
50 units of �1–2,3 mannosidase (New England BioLabs) was
added to the wells and incubated at 37 °C for 14 h. The reporter
cells were added to test the binding. For the reporter assay with
bacteria, 1.0 � 106 of PFA-fixed H. alvei were immobilized on
the 96-well plate as described above.

Generation of Anti-Dectin-2 mAb—The anti-Dectin-2 mAb
was generated as described previously (66). Briefly, two female
Lewis rats (Japan SLC) were immunized with Dectin-2-BWZ
cells emulsified with complete Freund’s adjuvant (Difco). Fol-
lowing two injections of the cells emulsified with incomplete
Freund’s adjuvant (Difco Laboratories), the immunized rats
were sacrificed, and common iliac lymph nodes were harvested
to generate hybridomas as described previously (66). The estab-
lished hybridomas were screened by the reporter assay
described previously (67). The animal experiments were per-
formed in accordance with the institutional animal ethics com-
mittee at the University of Tokyo. The established hybridoma
clone 2B4 produced anti-mouse Dectin-2 mAb, a rat IgG2a, �
chain determined by flow cytometry (66). Monoclonal Ab 2B4
was purified from the culture supernatant and labeled with
Alexa Fluor-647 (Life Technologies, Inc.) as described previ-
ously (66).

Generation of BM-DCs—BM-DCs were generated by in vitro
culture of mouse bone marrow cells as described previously
(68). Briefly, 3 � 106 mouse bone marrow cells were cultured in
a 10-cm dish with 12 ml of the RPMI 1640 medium (Lonza)
supplemented with 25 mM HEPES, 10% FBS (Thermo Scientific
Gibco), 55 �M 2-mercaptoethanol, 100 units/ml penicillin and
100 �g/ml streptomycin (Lonza), 2 mM glutamine (Lonza), 1
mM non-essential amino acids (Lonza), 1 mM sodium pyruvate
(Lonza), and 20 ng/ml mouse GM-CSF (Peprotech). The cul-
ture was kept undisturbed for 6 days. On day 6, the cells were
harvested and used as BM-DCs.

Stimulation of BM-DCs—BM-DCs (1 � 105 cells) were cul-
tured in a 96-well plate using the RPMI medium described
above without GM-CSF. Man and Gal-LPS were added to the
culture at a final concentration of 1 or 4 �g/ml, respectively,
and incubated for 7 h at 37 °C. The concentration was stan-
dardized for their reactivity toward TLR4 (Fig. 1B). For the
cytokine analysis, culture supernatant was harvested, and
TNF� and IL-10 were measured by ELISA. When the Syk inhib-
itor R406 was used, it was added to the cell culture at a final
concentration of 1 �M and incubated for 30 min before the
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addition of LPS. For CD80 and I-Ab expression analysis, stim-
ulated BM-DCs were harvested and analyzed by flow cytometry
as described above.

Western Blotting of Intracellular Proteins—One million BM-
DCs were stimulated with 1 or 4 �g/ml Man- and Gal-LPS,
respectively, for the indicated time period. Cells were then pro-
cessed as described previously with adaptation of lysis buffer
volume to 75 �l (69). Cell lysate equivalent to two hundred
thousand cells (15 �l) was subjected to SDS-PAGE using a
4 –15% gradient TGX minigel (Bio-Rad) for 90 min at 100 V.
Proteins were transferred onto nitrocellulose membrane (GE
Healthcare) at 100 V for 30 min. The membranes were blocked
with 5% nonfat milk (Lonza) in PBS containing 0.05% Tween 20
(PBS-T) for 1 h at 25 °C. The blocked membranes were washed
four times by incubating in PBS-T for 5 min each. Membranes
were then incubated with the primary antibodies in PBS con-
taining 1% bovine serum albumin for 1 h at 25 °C at a dilution of
1:1000 for Syk, phospho-Syk, I�B, and �-actin and 1:5000 for
p38 and phospho-p38. Membranes were washed as above and
probed with anti-rabbit IgG conjugated with horseradish per-
oxidase (Cell Signaling) in 5% nonfat milk in PBS-T at a dilution
of 1:3000 for 1 h at 25 °C. Membranes were washed as above and
incubated with the ECL detection reagent (GE Healthcare) and
imaged using Fluorochem E (ProteinSimple).

Human Blood Monocytes—Human peripheral blood was
obtained from the hemochromatosis patients undergoing a
therapeutic venesection at the Norfolk and Norwich University
Hospital (Norwich, UK). Human blood monocytes were iso-
lated as described previously (70). The Dectin-2 expression on
the monocytes was analyzed by flow cytometry. The freshly
isolated monocytes were stimulated with 1 ng/ml Man and 4
ng/ml Gal-LPS for 20 h at 37 °C. Human TNF� and IL-10 pro-
duction was monitored by ELISA. Mo-DCs were generated by
in vitro culture of human blood monocytes as described previ-
ously (70). Blood collection in this study was approved by the
ethics committee at the Faculty of Medicine and Health Sci-
ences at the University of East Anglia (reference number 2013/
2014-14HT). Importantly, the monocytes in the patients with
iron overload have been shown to respond to LPS, although the
response was lower when compared with that of monocytes
from healthy donors (71), justifying the use of monocytes from
the patients to study human Dectin-2 function.

Statistical Analysis—Student’s t test and one-way ANOVA
followed by Tukey’s test were used for statistical analysis on
Prism software (GraphPad). p � 0.05 was considered as statis-
tically significant.
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