7 research outputs found

    RVX-208, a BET-inhibitor for treating atherosclerotic cardiovascular disease, raises ApoA-I/HDL and represses pathways that contribute to cardiovascular disease

    Get PDF
    AbstractHigh density lipoproteins (HDL), through activity of the main protein component apolipoprotein A-I (ApoA-I), can reduce the risk of cardiovascular disease (CVD) by removing excess cholesterol from atherosclerotic plaque. In this study, we demonstrate that the bromodomain and extraterminal domain (BET) inhibitor RVX-208 increases ApoA-I gene transcription and protein production in human and primate primary hepatocytes. Accordingly, RVX-208 also significantly increases levels of ApoA-I, HDL-associated cholesterol, and HDL particle number in patients who received the compound in recently completed phase 2b trials SUSTAIN and ASSURE. Moreover, a post-hoc analysis showed lower instances of major adverse cardiac events in patients receiving RVX-208. To understand the effects of RVX-208 on biological processes underlying cardiovascular risk, we performed microarray analyses of human primary hepatocytes and whole blood treated ex vivo. Overall, data showed that RVX-208 raises ApoA-I/HDL and represses pro-inflammatory, pro-atherosclerotic and pro-thrombotic pathways that can contribute to CVD risk

    Data on gene and protein expression changes induced by apabetalone (RVX-208) in ex vivo treated human whole blood and primary hepatocytes

    Get PDF
    Apabetalone (RVX-208) inhibits the interaction between epigenetic regulators known as bromodomain and extraterminal (BET) proteins and acetyl-lysine marks on histone tails. Data presented here supports the manuscript published in Atherosclerosis “RVX-208, a BET-inhibitor for Treating Atherosclerotic Cardiovascular Disease, Raises ApoA-I/HDL and Represses Pathways that Contribute to Cardiovascular Disease” (Gilham et al., 2016) [1]. It shows that RVX-208 and a comparator BET inhibitor (BETi) JQ1 increase mRNA expression and production of apolipoprotein A-I (ApoA-I), the main protein component of high density lipoproteins, in primary human and African green monkey hepatocytes. In addition, reported here are gene expression changes from a microarray-based analysis of human whole blood and of primary human hepatocytes treated with RVX-208. Keywords: Bromodomain, BET proteins, BET inhibitor, RVX-208, JQ1, Vascular inflammation, ApoA-I, Apolipoprotein A-I, African green monkey, Primary human hepatocytes, Gene expression, Microarray

    Radiochemical processing of nuclear-reactor-produced radiolanthanides for medical applications

    No full text
    corecore