229 research outputs found

    Aspirin Dosing for the Prevention and Treatment of Ischemic Stroke: An Indication-Specific Review of the Literature

    Get PDF
    OBJECTIVE: To evaluate the efficacy of aspirin for the treatment and prevention of ischemic stroke and identify the minimum dose proven to be effective for each indication. DATA SOURCES: PubMed and MEDLINE searches (January 2009–January 2010) were performed to identify primary literature, using search terms including aspirin, stroke prevention, acute ischemic stroke, acetylsalicylic acid, atrial fibrillation, myocardial infarction, and carotid endarterectomy. Additionally, reference citations from publications identified were reviewed. STUDY SELECTION AND DATA EXTRACTION: Articles published in English were evaluated and relevant primary literature evaluating the efficacy of aspirin in the prevention of stroke was included in this review. DATA SYNTHESIS: Antiplatelet therapy is the benchmark for the prevention of ischemic stroke. Aspirin has been proven to prevent ischemic stroke in a variety of settings. Despite the frequency at which aspirin continues to be prescribed in patients at risk of ischemic stroke, there remains confusion in clinical practice as to what minimum dose is required in various at-risk patients. A thorough review of the primary literature suggests that low-dose (50–81 mg daily) aspirin is insufficient for some indications. Acute ischemic stroke treatment requires 160–325 mg, while atrial fibrillation and carotid arterial disease require daily doses of 325 and 81–325 mg, respectively. CONCLUSIONS: Available evidence suggests that aspirin dosing must be individualized according to indication. Recommendations provided by national guidelines at times recommend lower doses of aspirin than have been proven effective. Higher doses are indicated for stroke prevention in atrial fibrillation (325mg) and acute ischemic stroke patients (160–325 mg). Aspirin has not yet been proven effective for primary prevention of strokes in men, and a minimum dose for these patients cannot be determined from the available data

    Site‐specific weed management—constraints and opportunities for the weed research community: Insights from a workshop

    Get PDF
    The adoption of site‐specific weed management (SSWM) technologies by farmers is not aligned with the scientific achievements in this field. While scientists have demonstrated significant success in real‐time weed identification, phenotyping and accurate weed mapping by using various sensors and platforms, the integration by farmers of SSWM and weed phenotyping tools into weed management protocols is limited. This gap was therefore a central topic of discussion at the most recent workshop of the SSWM Working Group arranged by the European Weed Research Society (EWRS). This insight paper aims to summarise the presentations and discussions of some of the workshop panels and to highlight different aspects of weed identification and spray application that were thought to hinder SSWM adoption. It also aims to share views and thoughts regarding steps that can be taken to facilitate future implementation of SSWM

    Nationwide Registry‐Based Analysis of Infective Endocarditis Risk After Pulmonary Valve Replacement

    Get PDF
    Background: Infective endocarditis (IE) after pulmonary valve replacements in congenital heart disease is a significant concern. This study aimed to identify specific long-term risk factors for IE after percutaneous pulmonary valve implantation or surgical pulmonary valve replacement. Methods and Results: All patients with congenital heart disease from the National Register for Congenital Heart Defects with at least 1 pulmonary valve replacement before January 2018 were included. A total of 1170 patients (56.3% men, median age at study inclusion 12 [interquartile range {Q1-Q3} 5-20 years]) received 1598 pulmonary valve replacements. IE occurred in 4.8% of patients during a follow-up of total 9397 patient-years (median 10 [Q1-Q3, 6-10] years per patient). After homograft implantation 7 of 558 (1.3%) patients developed IE, after heterograft implantation 31 of 723 (4.3%) patients, and after Melody valve implantation 18 of 241 (7.5%) patients. Edwards Sapien and mechanical valves were used less frequently and remained without IE. The incidence of IE in heterografts excluding Contegra valves was 7 of 278 (2.5%), whereas the incidence of IE in Contegra valves was 24 of 445 (5.4%). The risk of IE was not increased compared with homografts if Contegra valves were excluded from the heterografts (hazard ratio [HR], 2.60; P=0.075). The risk of IE was increased for bovine jugular vein valves, Contegra valves (HR, 6.72; P<0.001), and Melody valves (HR, 5.49; P<0.001), but did not differ between Melody valves and Contegra valves (HR, 1.01; P=0.978). Conclusions: Bovine jugular vein valves have the highest risk of IE, irrespective of the mode of deployment, either surgical or percutaneous

    Wearable devices can predict the outcome of standardized 6-minute walk tests in heart disease

    Get PDF
    Wrist-worn devices with heart rate monitoring have become increasingly popular. Although current guidelines advise to consider clinical symptoms and exercise tolerance during decision-making in heart disease, it remains unknown to which extent wearables can help to determine such functional capacity measures. In clinical settings, the 6-minute walk test has become a standardized diagnostic and prognostic marker. We aimed to explore, whether 6-minute walk distances can be predicted by wrist-worn devices in patients with different stages of mitral and aortic valve disease. A total of n = 107 sensor datasets with 1,019,748 min of recordings were analysed. Based on heart rate recordings and literature information, activity levels were determined and compared to results from a 6-minute walk test. The percentage of time spent in moderate activity was a predictor for the achievement of gender, age and body mass index-specific 6-minute walk distances (p < 0.001; R2 = 0.48). The uncertainty of these predictions is demonstrated

    Radiomics-based aortic flow profile characterization with 4D phase-contrast MRI

    Get PDF
    4D PC MRI of the aorta has become a routinely available examination, and a multitude of single parameters have been suggested for the quantitative assessment of relevant flow features for clinical studies and diagnosis. However, clinically applicable assessment of complex flow patterns is still challenging. We present a concept for applying radiomics for the quantitative characterization of flow patterns in the aorta. To this end, we derive cross-sectional scalar parameter maps related to parameters suggested in literature such as throughflow, flow direction, vorticity, and normalized helicity. Derived radiomics features are selected with regard to their inter-scanner and inter-observer reproducibility, as well as their performance in the differentiation of sex-, age- and disease-related flow properties. The reproducible features were tested on user-selected examples with respect to their suitability for characterizing flow profile types. In future work, such signatures could be applied for quantitative flow assessment in clinical studies or disease phenotyping

    CARDIOKIN1: computational assessment of myocardial metabolic capability in healthy controls and patients with valve diseases

    Get PDF
    BACKGROUND: Many heart diseases can develop a reduced pumping capacity of the heart muscle. A mismatch between ATP demand and ATP production of cardiomyocytes is one of the possible causes. Assessment of the relation between the myocardial ATP production (MV(ATP)) and cardiac workload is important for better understanding disease development and choice of nutritional or pharmacological treatment strategies. As there is currently no method for the measurement of MV(ATP) in vivo, the use of physiology-based metabolic models in conjunction with protein abundance data is an attractive approach. METHODS: We developed a comprehensive kinetic model of the cardiac energy metabolism (CARDIOKIN1), which recapitulates numerous experimental findings on cardiac metabolism obtained with isolated cardiomyocytes, perfused animal hearts and in vivo studies with humans. We used the model to assess the energy status of the left ventricle (LV) of healthy subjects and patients with aortic stenosis (AS) and mitral valve insufficiency (MI). Maximal enzyme activities were individually scaled by means of protein abundances in LV tissue samples. The energy status of the LV was quantified by the ATP consumption at rest (MV(ATP)(rest)), at maximal workload (MV(ATP)(max)), and by the myocardial ATP production reserve (MAPR) representing the span between MV(ATP)(rest) and MV(ATP)(max). RESULTS: Compared with controls, in both groups of patients, MV(ATP)(rest) was increased and MV(ATP)(max) was decreased resulting in a decreased MAPR, although all patients had preserved ejection fraction. Notably, the variance of the energetic status was high ranging from decreased to normal values. In both patient groups, the energetic status was tightly associated with mechanic energy demand. Moreover, a decrease of MV(ATP)(max) was associated with a decrease of the cardiac output indicating that cardiac functionality and energetic performance of the ventricle are closely coupled. CONCLUSIONS: Our analysis suggests that the ATP producing capacity of the LV of patients with valvular dysfunction is generally diminished and correlates positively with mechanic energy demand and cardiac output. However, large differences exist in the energetic state of the myocardium even in patients with similar clinical or image-based markers of hypertrophy and pump function

    Disease- and sex-specific differences in patients with heart valve disease: a proteome study

    Get PDF
    Pressure overload in patients with aortic valve stenosis and volume overload in mitral valve regurgitation trigger specific forms of cardiac remodeling; however, little is known about similarities and differences in myocardial proteome regulation. We performed proteome profiling of 75 human left ventricular myocardial biopsies (aortic stenosis = 41, mitral regurgitation = 17, and controls = 17) using high-resolution tandem mass spectrometry next to clinical and hemodynamic parameter acquisition. In patients of both disease groups, proteins related to ECM and cytoskeleton were more abundant, whereas those related to energy metabolism and proteostasis were less abundant compared with controls. In addition, disease group-specific and sex-specific differences have been observed. Male patients with aortic stenosis showed more proteins related to fibrosis and less to energy metabolism, whereas female patients showed strong reduction in proteostasis-related proteins. Clinical imaging was in line with proteomic findings, showing elevation of fibrosis in both patient groups and sex differences. Disease- and sex-specific proteomic profiles provide insight into cardiac remodeling in patients with heart valve disease and might help improve the understanding of molecular mechanisms and the development of individualized treatment strategies
    corecore