1,655 research outputs found

    A 3-dimensional finite-difference method for calculating the dynamic coefficients of seals

    Get PDF
    A method to calculate the dynamic coefficients of seals with arbitrary geometry is presented. The Navier-Stokes equations are used in conjunction with the k-e turbulence model to describe the turbulent flow. These equations are solved by a full 3-dimensional finite-difference procedure instead of the normally used perturbation analysis. The time dependence of the equations is introduced by working with a coordinate system rotating with the precession frequency of the shaft. The results of this theory are compared with coefficients calculated by a perturbation analysis and with experimental results

    Calculating rotordynamic coefficients of seals by finite-difference techniques

    Get PDF
    For modelling the turbulent flow in a seal the Navier-Stokes equations in connection with a turbulence (kappa-epsilon) model are solved by a finite-difference method. A motion of the shaft round the centered position is assumed. After calculating the corresponding flow field and the pressure distribution, the rotor-dynamic coefficients of the seal can be determined. These coefficients are compared with results obtained by using the bulk flow theory of Childs and with experimental results

    Release of vasopressin from isolated permeabilized neurosecretory nerve terminals is blocked by the light chain of botulinum A toxin

    Get PDF
    The intracellular action on exocytosis of botulinim A toxin and constituent chains was studied using permeabilized isolated nerve endings from the rat neural lobe. The release of the neuropeptide vasopressin was measured by radioimmunoassay. In the presence of the reducing agent dithiothreitol, the two-chain form of botulinum A toxin inhibited vasopressin release induced by 10 μM free calcium. Half maximal inhibition was obtained with 15 nM botulinum A toxin. In the absence of the heavy chain the light chain of the toxin strongly inhibited exocytosis with a half maximal effect of 2.5 nM. The inhibitory effects on secretion could be prevented by incubating the light chain with an immune serum against botulinum A toxin. The heavy chain of botulinum A toxin did not affect vasopressin release. However, it prevented the inhibitory effects of the light chain on stimulated exocytosis. It is concluded that botulinum A toxin inhibits the calcium-dependent step leading to exocytosis by interfering with a target present in the isolated and permeabilized nerve terminals. The functional domain of this neurotoxin, which is responsible for the inhibition of vasopressin release, is present in its light chain

    Release of vasopressin from isolated permeabilized neurosecretory nerve terminals is blocked by the light chain of botulinum A toxin

    Get PDF
    The intracellular action on exocytosis of botulinim A toxin and constituent chains was studied using permeabilized isolated nerve endings from the rat neural lobe. The release of the neuropeptide vasopressin was measured by radioimmunoassay. In the presence of the reducing agent dithiothreitol, the two-chain form of botulinum A toxin inhibited vasopressin release induced by 10 μM free calcium. Half maximal inhibition was obtained with 15 nM botulinum A toxin. In the absence of the heavy chain the light chain of the toxin strongly inhibited exocytosis with a half maximal effect of 2.5 nM. The inhibitory effects on secretion could be prevented by incubating the light chain with an immune serum against botulinum A toxin. The heavy chain of botulinum A toxin did not affect vasopressin release. However, it prevented the inhibitory effects of the light chain on stimulated exocytosis. It is concluded that botulinum A toxin inhibits the calcium-dependent step leading to exocytosis by interfering with a target present in the isolated and permeabilized nerve terminals. The functional domain of this neurotoxin, which is responsible for the inhibition of vasopressin release, is present in its light chain

    The light chain of tetanus toxin inhibits calcium-dependent vasopressin release from permeabilized nerve endings

    Get PDF
    The effects of tetanus toxin and its light and heavy chain subunits on vasopressin release were investigated in digitonin-permeabilized neurosecretory nerve terminals isolated from the neural lobe of the rat pituitary gland. Exocytosis was induced by challenging the permeabilized nerve endings with micromolar calcium concentrations. Tetanus toxin inhibited vasopressin release only in the presence of the reducing agent dithiothreitol. This effect was irreversible. The purified light chain of tetanus toxin strongly inhibited exocytosis in a dose-dependent manner with half-maximal effect at c. 10 nM. The action of the light chain was observed after only 2.5 min of preincubation. Separated heavy chain subunit had no effect on hormone secretion. Inhibition of vasopressin release could be prevented by preincubating the light chain of tetanus toxin with an immune serum against tetanus toxin. The data clearly demonstrate that in mammalian neurosecretory nerve endings tetanus toxin acts at a step downstream from the activation by Ca2+ of the exocytotic machinery and that the functional domain of this toxin is confined to its light chain

    Statins: pleiotropic, but less than previously thought

    Get PDF
    This editorial refers to ‘Effect of statins on ventricular tachyarrhythmia, cardiac arrest, and sudden cardiac death: a meta-analysis of published and unpublished evi-dence from randomized trials’, by K. Rahimi et al., doi:10.1093/eurheartj/ehs005 Statins are undoubtedly the mainstay in the treatment of hyperlip-idaemia. They are used in primary and secondary prevention of cardiovascular disease.1,2 It is therefore not surprising that statins rank very high among the most successful drugs in the history of medicine. For example, atorvastatin has raked in around US$130 billion for Pfizer during its 14 years on the market, making it cur-rently the world’s bestselling drug.3 Recent studies show that statins possess powerful pleiotropic effects that are independent of their effects on lipids and lipoproteins.4 The pleiotropic effects of statins are credite

    Rotordynamic coefficients and leakage flow of parallel grooved seals and smooth seals

    Get PDF
    Based on Childs finite length solution for annular plain seals an extension of the bulk flow theory is derived to calculate the rotordynamic coefficients and the leakage flow of seals with parallel grooves in the stator. Hirs turbulent lubricant equations are modified to account for the different friction factors in circumferential and axial direction. Furthermore an average groove depth is introduced to consider the additional circumferential flow in the grooves. Theoretical and experimental results are compared for the smooth constant clearance seal and the corresponding seal with parallel grooves. Compared to the smooth seal the direct and cross-coupled stiffness coefficients as well as the direct damping coefficients are lower in the grooved seal configuration. Leakage is reduced by the grooving pattern
    corecore