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CALCULATING ROTORDYNAMIC COEFFICIENTS OF SEALS

BY FINITE-DIFFERENCE TECHNIQUES

F.J. Dietzen and R. Nordmann

University of Kalserslautern

Kalserslautern, Federal Republic of Germany

For modelling the turbulent flow in a seal the Navier-Stokes equations in con-

nection with a turbulence model (k-_-model) are solved by a finite-difference

method. A motion of the shaft round the centered position is assumed. After cal-

culating the corresponding flow field and the pressure distribution, the rotor-

dynamic coefficients of the seal can be determined. These coefficients are com-

pared with results obtained by using the bulk flow theory of Childs [i] and with

experimental results.

INTRODUCTION

It is well known that the fluid forces in seals, which are described by equa-

tion (I)

have a strong influence on the dynamic behaviour of rotating turbo-machinery.

While there exist some good theories for calculating the coefficients of

straight seals [I], no satisfactory model is known to describe the effects of

grooved seals. Reference [2] presents a survey and comparison of results of

existing theories. The authors' opinion is that the existing methods are not

at all satisfactory. The main weakness of these theories is the fact, that they

are using so called 'bulk-flow-theories' which connect the wall shear stress with

the mean flow-velocity relative to this wall. Howeve_in the region of a groove

there occur stresses in the fluid which cannot be neglected. Calculating the flow

by using the Navier-Stokes equations in connection with a turbulence model elimi-

nates this disadvantage. Therefore, a finite difference model is presented which

allows the calculation of the coefficients by using these equations.
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Nomenclature:
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Forces on the shaft in z and y direction

direct and cross-coupling stiffness in eq. (1, 24)

direct and cross-coupling damping in eq. (1,24)

direct and cross-coupling inertia in eq. (1, 24)

axial, radial and circumferential velocity

pressure

turbulence energy

energy dissipation

effective, laminar and turbulent viscosity

density

time

axial, radial and circumferential coordinate

radial coordinate after transformation

Constants od the k-s-model

Constants of the k-s-model

general variable standing for u, v, w, p, k or s

general source term

seal clearance by centric shaft position

seal clearance by eccentric shaft position

radius of the precession motion of the shaft

perturbation parameter

rotational frequency of the shaft

precession frequency of the shaft

entrance lost-coefficient

Length of the seal
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ri

r a

Subscripts

0

1

R

S

radius of the rotor (shaft)

radius of the stator

zeroth order variables

first order variables

rotor

stator

MATHEMATI CAL MODEL

To describe turbulent flow by the Navier-Stokes equations the velocities and the

pressure are separated into mean and fluctuating quantities.

u = u + u' v = v + v'

w = w + w' p = p + p'

Time-averaging of the Navier-Stokes equations leads to terms of the following

form: _-r_-r, _-r_-r, _-r_T.

TO substitute these terms one can use the Boussinesq's eddy-viscosity concept.

For example:

Pt 3u 3v

= - 7 (_ + Tx ) (2)

Pt is the turbulent viscosity, which is not a fluid property but depends strongly

on the state of flow. Summing up the laminar and turbulent viscosity to an effec-

tive viscosity

_e = _I + _t ' (3)

one obtains the following time-averaged Navier-Stokes equations for turbulent

flow. (In the following the overbars are omitted.)

I. axial momentum:

3u 3 3 , 3u, 13 13 3u 13 , wu" la ,1 3u,
p_ + _-_(puu) - _t_eT_; + _(rpvu) - _(rl_e_- _) + _-_tp ; - _-ot_Pe_; =

_@__p a , au, la , 3v, 13 , Bw,
3x + _t_ea-x; + r_e-@x; + raOtPe_-£; (4)

79



2. radial momentum:

3v
P_ + __x(pUv) 3 , 3v, 13 "r " 13 r 3v, 13 13 ,1 3v,- _-_,pe_-_) + -_-_ pvv) - r_-{(pe_--_-) + _--6(pwv) - _-6_--_e_-_; :

__p 13 @v 3 , 3u, 13 3 w 2 3w 2 _0 2
3r + r_-r(rPe_ ) + 3-x_Pe_-r ) + r3-c)(rPe_-r(-r)) - -r2"e_ - r2Pe v + r w (5)

3. tangential momentum

3w 3 _ , 3w, 13 13 3w 13 13 ,i 3w,
p_ + _-x(pUw) - _tpe_-_) + _(rpvw) - _-_(rlJe_ ) + r_(pww) - r_-6trlJe_-_)=

_lBp 13 _v 3 ,1 3u, 1 3v
r30 + r_(_e_ ) + _£r_e_-O _ + rZ_e_

4. continuity equation

w 3 13 ,2 v" 13 ,1 3w, Pvwrz_(r]_ e) + r_-_r]_e ) + r_-E)_Pe_-_).-

(6)

13 'r " 13 x(PU)+ pv; +  T (pw): o
(7)

To describe Pt we use the k-_ turbulence model [3, 4]. This model determines Pt

as a function of the kinetic energy k of the turbulent motion and the energy

dissipation _. It is relative simple and often used to calculate the turbulent

flow in seals [12, 13, 14, 15]. Stoff [12], for example, compares his flow meas-

urements in a labyrinth seal with calculations on base of the k-e model. He

observes that both agree well.

k2 (8)
Pt = c p_--

The equations for k and c can be derived in exact form from the Navier-Stokes

equations

5. turbulence energy k

. 3 _Pe3k_ . 13 13 , Pe3k
3_k 3 _puk) .... _ -
_St " 3-x' 3X_OkSX_ • _(rpvk_ _-_£r_kk_-_)

G - pe

+ l_(pwk) 13 _IPeSk_
- =

(.9)
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6. energy dissipation

ae a _(laeae la la , Ueae,
p_ + _(pue) - ax'a a-x) + _(rpve) -_-r_r_--a--6)

la la (l_eae_ =
+ Fge(pwe) - Fa-o'F6-g6'

ez (10)
C2p_-CI[G -

G = lae{ 2(/av_ 2 tau/2 /law + v 2) av au_2 flav'_' + W_' + 'rae -_) + (gi + ag' + 'Fa_ +
aw w = aw lau_2}
ar r) + (a-x + raC)'

C = 0.09 CI = 1.44 C2 = 1.92

K

< = 0.4187 o k = 1. o = C_(Cl - Cz)

(II)

To model the flow in the case of a shaft moving on an eccentric orbit, a coordi-

nate-transformation [5, 6] is made. (Fig. 1)

r e-r
n = r a - _ CO (12)

8(O,t) is the seal clearance, varying with angle @ and time t. By this trans-

formation the eccentric moving shaft is reduced to a shaft rotating in the

centre of the seal.

We must note that the following relations of the transformation must be used.

+ (an)O(_-_)r

aq_ aq_ aq_ an
(Y[)r = (_)n + (a-n)t(a-%-lr (131

(_x) r a@:
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PERTURBATION ANALYSIS

The rotordynamic coefficients of a seal are in a wide range independent of the

shaft eccentricity. Therefore we can assume small shaft motions around the cen-

tered position which allow us to use a perturbation analysis.

6 = Co - eh I

u = uo + eu 1

w = w° + ewI

v = v o + ev 1

P = Po + ePl

With these expressions and the coordinate-transformation equation (12) the

equations (4), (5), (6), (7), (9), (10) change themselves.

This is demonstrated in the following examples.

From equation (12) we obtain:

h
r=n+e -_

Co(r a - n) (14)

and so:

a Coa 1 a

ar 6 an h an
1-e -_

Co

(15)

l@_(rpvu) =
1 i a {p(q + e_o(ra )(u o + eul)}q + e_ - _ - q))(v 0 + evlCo(r a - n) I e an

0

la la
= _(nPVoUo) + en_-_n{np(UoVI

_a , ra 1
+ VoUl)} + eCoi-_(PUoVo) + (I -_-)_PUoVo}

(16)
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1 D
{T6(p(Uo+ eu )(wo + ew ))

q + e_(r a _ q) I i
O

D D ra - r
+ _-6(p(u° + eu )(wo + ew )_(r a Co)}

(17)

: e!_t i i a'q_ tp oWo)Co_--n-nao_PUo w + PWoU ) + e(n - r _ID , u ,1 Dh_

Du ,DUo Du_ D(Uo + eu_)D • ra - r

p_-_ = Pt_-- + _-_-) + PDn Tttra _ Co) (18)

Du+ DUo n - r h_ _a_W'_

= epic- ep_q-(- Co _Dt

One obtains a set of zero-order equations for uo, vo, wo, Po' ko' _o and a set

of first-order equations for uI, v1, w I, Pl" It is assumed that the viscosity ue

remains constant for small motions. Therefore the kI and _1 equations can be

dropped.

The variation of the seal clearance for an eccentric shaft can be described by

the following equation

hi = eZ-cose + Y sine

So we establish the same assumptions as in [1], that the velocities and the

pressure in circumferential direction can be described by sin- and cos-functions,

in our first order equations

u I = Ulc cose + Uls sine v I = Vlc cose + Vls sine

w I = Wlc cose + Wls sine Pl = Plc cose + Pls sine

By separating in the resulting equations the terms with sine and cosO we obtain

two real equations of every 1. order equation. These equations are then arranged

in a new form by introducing complex variables.
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Ul = Ulc + iUls

Wl = Wlc + iWls

hl = z+iy

_1 = Vlc + iVls

Pl = Plc + i Pls

Wenow assumethat the shaft is moving on a circular orbit with frequency
1

around the centered position. Also h I takes the form:

hl = ro eiQt

and similary

Ul = 01 eiQt _1 = G1 eiQt

^ _ ^G1 = Wl ei_t 1= Pl eiQt

In the following we assume that t = 0; this means that the shaft is just moving

through the z-axis in the y-direction.

The resulting equations for uo, v o, wo, Po' ko' eo and GI, VI' Wl have all the

same form.

Tx- (pUo_) - T_ (re ) + % Tfl- (nPVo¢)
1 a 8¢

_n (rcn_) = S¢ (19)

Zeroth Order Equations

¢ re s¢

aPo a , aUo 1_ , aVo,
Uo Pe -a-x- + TxtPea-x -) + n_tPenaT_

vo lJe
aPo + _), _)Uo, i;) , aVo 2

+ -) - %Vo +

WO_) _VoW °Wo Pe -_2 _ (qPe) -

I 0 0

II e
k -- G - p_

0 GI.

Pe

_o
_2

CI_G - C_,p_--
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First Order Equations

ORIGINAL _ .... '" _

.OF. POOR QUAti_"g

r¢ s¢

Q1 Pe _aa___xl+a ao_ 13 , a9_, a 18_(Pea--x-' + n_(qPe_--x-) - _-_(PUo01) - 5_-_(npUo91)

Pe Wo .p _ iPe3_
-_01 + ip(-_ +-_-)01 + 1_UoWI n ax + D1 + iD2

91 Pe
3 801_ 13 , aV1, _ a ^ _ 13

__.__1 + _-x(Pe_x-' + __(,nPeaT) 3x(PVoUl) __(npvogl)

3 W_ Pe Wo
-iPe_(-_)- 3_z91+ ip(-_-_)91+ (2PWo + i2_ + i_qVo)Wl+ D3 + iD4

Q1 Pe in_ - ia _Pe0 .la a ^ i a_,_-- 1) - 1_-_(PeOl) - _-_(PWoUl) - _-_(pn2Wogl)

Only the first order continuity-equation to determine Pl shows a slightly

modified form.

3 la iP_l + D7 +iD8_-_(PO1) + _(np9 I) = (20)

A

The parameters DI - D8 do not depend on Ul' v1' w1' Pl and result from the

coordinate-transformation. (DI - D8 are shown in the appendix.)

FINITE-DIFFERENCE METHOD

For solving these equations a finite-difference procedure is used which is

based on a method published by Gosman and Pun [7]. The seal is discretized

by a grid (Fig. 2) and the variables are calculated at the nodes. The veloci-

ties u, v are determined at points which lie between the nodes where the vari-
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ables p, w, k, _ are calculated (Fig. 3). Because of its general convergence
a 'hybrid -difference' method is used, which meansthat the convective terms

are calculated by a 'upwind'- or a 'central-difference' method as a function

of flow-velocity and grid-distance.

Becausethere is no explicit equation to calculate p we use the continuity

equation. Starting by a guess for p, the momentum-equationsare solved; with

the resulting values u, v (G1, c_I, _i) the flow through the control-area around

a point for the pressure p (61) is calculated. If the difference between the

entrance- and the exit-flow rate is less than O, p must be reduced; in the

opposite case p must be increased. This is done by the 'SIMPLE'-procedure [8]

or better by the more modern version 'PISO' [9].

However one has to respect in the determination of Pl with these procedures

that the equation for Wl has not the same form as for 01 and Vl" Also we have

to notice that uo, Vo, Po' Wo' ko' _o are real-, while 01, Vl' Wl' Pl are of

complex type. The mesh to calculate u, v doesn't extend all the way to the boun-

dary wall, and the component u, w is allowed to slip in accordance with the

logarithmic law of the wall.

LEAKAGE FLOW AND DYNAMIC COEFFICIENTS

Leakage flow, Centered Position

For centered shaft position the values Uo, Vo, Po' Wo' ko _o are determined.

Boundary conditions:

UoS = 0 VoS = 0 WoS = 0

UoR = 0 VoR = 0 WoR = _.r i

The leakage results from the calculated axial velocity uo-

Dynamic Coefficients, Eccentric Shaft Motion

For calculating the dynamic coefficients the following assumptions are made:

i. The shaft rotates on a circular orbit around the centered position.

2. At time t = 0 the shaft is located at: z = r o, y = 0

3. The viscosity we remains constant in spite of the eccentric motion.
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Boundary conditions: (Fig. 4, 5)

Stator: ulS = (0., 0.) vlS = (O., 0.)

A

wlS : (0., 0.)

Rotor: UlR = (0., 0.) VlR = (O"(_-m)'Co) WlR = (_Co' 0.)

1 2
Entrance: PA = _ pu (1 + _) + PB

PlBj : - pUOBj(1 + _) UlBj^

A

Exit: Plcj (0., 0.)

To satisfy the entrance condition we make use of the iterative character of the

finite-difference method. This means that we start with a pressure PlBj^ at the

entrance and after every iteration step we check if the calculated UlB j satisfy

condition (21). If not, the pressure _IBj will be corrected.

The resulting forces on the shaft are calculated by a pressure integration for

the five precession frequencies: _ = 0_, 0,5 _, 1,0 _, 1,5 _, 2 _.

_r i

- gz = o_T_-- I pl C dx (22)L

_r i

- Fy = ol_- f pz S dx (23)L

By a 'Least-Square-Fit' we obtain the rotor-dynamic coefficients of (1) from the

following equations

(24)

The precession frequencies can be arbitrarily chosen, because the dynamic coeffi-

cients are mostly independent of them. We take the same as in [1].

RESULTS FOR AN ANNULAR SEAL

To test the theory, calculations are made for a straight smooth seal. The results

are compared with the experimental values of Massmann [10] and the results of

Childs theory [1].



Seal Data:

L = 23,5 mm _I = °'7"1°-3 Ns/m3

r i = 23,5 mm p = 996 kg/m 3

Co = o,2 mm _ = o,5

A fully developed turbulent axial and circumferential flow at the entrance of the

seal is assumed. As in [10] flowrates are measured, in the presented calcu-

lation we suppose that the axial flow velocity is known:

Uaverag e = 16,46 m/s

and that the average circumferential velocity at the entrance is half the shaft-

speed.

For a known mass flow the pressure difference between entrance and exit of the

seal can be calculated. The results of this theory are compared with Childs

theory in Fig. 6.

In Fig. 7, 8, 9, i0, 11 results of the presented theory, Childs theory [1] and

experimental data from Massmann [i0] are shown.

Both theories are in good agreement with each other and with the measurements.

For calculation a mesh with 15 x 5 nodes in x-r direction was applied. The CPU

time was about 30 sec on a Siemens 7.561 computer.

RESULTS FOR A GROOVED SEAL

We also made some calculations, for the grooved seal, whose geometry and seal

data are shown in Fig. 12. In Fig. 13 the leakage for a given pressure difference

is presented as a function of the groove depth. First the leakage decreases and

then slightly increases again. This behaviour agrees with the measurements of

Black [ii].

In Fig. 14, 15, 16, 17 the stiffness K, k and the damping D, d are shown. The

coefficients K, k, D decrease with growing groove depth. Only the damping d

increases. Although we haven't yet any experimental results for this seal the

tendencies seem to be right.

CONCLUSION

It is shown that it is possible to calculate the dynamic coefficients of seals

with a finite-difference method, based on the Navier-Stokes equation in connec-

tion with a turbulence model. Although application on straight seals is possible,
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it was not our aim to develop a procedure for this seal configuration but to

present a method which will be applicable on grooved seals. The superiority of

the theory versus other methods is the simplicity in use for grooved seals by
A

only neglecting the terms D1 - D8 in the equations for GI, _1' GI' Pl in the

grooves, while there exists no mesh displacement.

Appendix:

Transformation-constants for first order equations

5Vo _uo ra)l( _Vo ra _eBUo
D1 =Tq(_e_ - + _e_-_- - PVoUo) + (1 - n "n'Pe_-_- - PVoUo) + (1 -_-,_

r a _wo _ 3uo
D2 = (-_-- l){_-_(_eT_-) --_(PUoWo)} -Qp_--_-(n - r a)

ra _ _

D3 (1 rl )(PWoWo PVoVo We _e_V°"
..... 2n2v o +L_-- _-_- ) _(PVoVo)

BPo + 2___, _Vo,
- 3--6- _ntPeT6-_

= ra _ ,{3 , 3 Wo 3 3Vo
D4 (_-- i)-5_t_eq_(-_--)) --_(PWoVo)} - f_p_--_-(q- ra)

D5 - _-_EUeq_-_- ) -_-_(UeWo ) + (I - _--)_e_t-_- ) -_n(PVoWo) + 2.{VoWo(a - I)

3w o
ra _ _ _e _Po__ _p_(n - ra)D6 = (1 --_-){T_(PWoWo) --_(2_-Vo) + 3n "

r 3v o
D7 = p a_o(_- _) _7-

r a _wo
D8 = (1 - -_-)p_-_-

With, for example:

1_ _u 12 , _v, 13 13 13 )+
r_r(r_eT_) + _r_r_e,_-_) = _r( r _xr) _ _rri(q TXrO) + e_(q _xr 1

h1:1_ , ,ra ra,l@ ,

%t_'-_LqL_- - 1)ZXro ) + (2 -_--)_q%Xro)}
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Fig. 1 Geometry of the eccentric shaft

Fig. 2 Mesh arrangement in the seal
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