93 research outputs found

    A successful lifestyle intervention model replicated in diverse clinical settings

    Get PDF
    Lifestyle interventions (LIs) can treat metabolic syndrome and prevent type 2 diabetes mellitus, but they remain underutilised in routine practice. In 2010, an LI model was created in a rural primary care practice and spread with few resources to four other rural practices. A retrospective chart review evaluated changes in health indicators in two practice environments by following 372 participants, mainly women (mean age 52  years). Participants had a mean body mass index of 37 kg/m2 at baseline and lost an average of 12% of their initial body weight as a result of the intervention. Among  participants at the first intervention site for whom cardiometabolic data were available, the prevalence of metabolic syndrome decreased from 58% at baseline to 19% at follow-up. Taken as a whole, our experience suggests that LIs are feasible and deliver meaningful results in routine primary care practice

    Cellular injury and neuroinflammation in children with chronic intractable epilepsy

    Get PDF
    <p>Abstract</p> <p>Objective</p> <p>To elucidate the presence and potential involvement of brain inflammation and cell death in neurological morbidity and intractable seizures in childhood epilepsy, we quantified cell death, astrocyte proliferation, microglial activation and cytokine release in brain tissue from patients who underwent epilepsy surgery.</p> <p>Methods</p> <p>Cortical tissue was collected from thirteen patients with intractable epilepsy due to focal cortical dysplasia (6), encephalomalacia (5), Rasmussen's encephalitis (1) or mesial temporal lobe epilepsy (1). Sections were processed for immunohistochemistry using markers for neuron, astrocyte, microglia or cellular injury. Cytokine assay was performed on frozen cortices. Controls were autopsy brains from eight patients without history of neurological diseases.</p> <p>Results</p> <p>Marked activation of microglia and astrocytes and diffuse cell death were observed in epileptogenic tissue. Numerous fibrillary astrocytes and their processes covered the entire cortex and converged on to blood vessels, neurons and microglia. An overwhelming number of neurons and astrocytes showed DNA fragmentation and its magnitude significantly correlated with seizure frequency. Majority of our patients with abundant cell death in the cortex have mental retardation. IL-1beta, IL-8, IL-12p70 and MIP-1beta were significantly increased in the epileptogenic cortex; IL-6 and MCP-1 were significantly higher in patients with family history of epilepsy.</p> <p>Conclusions</p> <p>Our results suggest that active neuroinflammation and marked cellular injury occur in pediatric epilepsy and may play a common pathogenic role or consequences in childhood epilepsy of diverse etiologies. Our findings support the concept that immunomodulation targeting activated microglia and astrocytes may be a novel therapeutic strategy to reduce neurological morbidity and prevent intractable epilepsy.</p

    Extensive release of methane from Arctic seabed west of Svalbard during summer 2014 does not influence the atmosphere

    Get PDF
    © 2016. American Geophysical Union. All Rights Reserved. We find that summer methane (CH4) release from seabed sediments west of Svalbard substantially increases CH4 concentrations in the ocean but has limited influence on the atmospheric CH4 levels. Our conclusion stems from complementary measurements at the seafloor, in the ocean, and in the atmosphere from land-based, ship and aircraft platforms during a summer campaign in 2014. We detected high concentrations of dissolved CH4 in the ocean above the seafloor with a sharp decrease above the pycnocline. Model approaches taking potential CH4 emissions from both dissolved and bubble-released CH4 from a larger region into account reveal a maximum flux compatible with the observed atmospheric CH4 mixing ratios of 2.4-3.8 nmol m-2 s-1. This is too low to have an impact on the atmospheric summer CH4 budget in the year 2014. Long-term ocean observatories may shed light on the complex variations of Arctic CH4 cycles throughout the year.The project MOCA- Methane Emissions from the Arctic OCean to the Atmosphere: Present and Future Climate Effects is funded by the Research Council of Norway, grant no.225814 CAGE – Centre for Arctic Gas Hydrate, Environment and Climate research work was supported by the Research Council of Norway through its Centres of Excellence funding scheme grant no. 223259. Nordic Center of Excellence eSTICC (eScience Tool for Investigating Climate Change in northern high latitudes) funded by Nordforsk, grant no. 57001

    Recent developments in the genetics of childhood epileptic encephalopathies: impact in clinical practice

    Full text link

    Kelps and environmental changes in Kongsfjorden: Stress perception and responses

    Get PDF

    Changes in meltwater chemistry over a 20-year period following a thermal regime switch from polythermal to cold-based glaciation at Austre Broggerbreen, Svalbard

    Get PDF
    Our long-term study gives a rare insight into meltwater hydrochemistry following the transition of Austre Brøggerbreen from polythermal to cold-based glaciation and its continued retreat. We find that the processes responsible for ion acquisition did not change throughout the period of records but became more productive. Two regimes before and after July/August 2000 were identified from changes in solute concentrations and pH. They resulted from increased chemical weathering occurring in ice-marginal and proglacial environments that have become progressively exposed by glacier retreat. Carbonate carbonation nearly doubled between 2000 and 2010, whilst increases in the weathering of silicate minerals were also marked. In addition, the end of ablation season chemistry was characterized by reactions in long residence time flow paths like those in subglacial environments, in spite of their absence in the watershed. Furthermore, the retreat of the glacier caused the sudden re-routing of meltwaters through its immediate forefield during 2009, which more than doubled crustal ion yields in this particular year and influenced chemical weathering in 2010 regardless of a low water flux. Such a “flush” of crustally derived ions can be meaningful for downstream terrestrial and marine ecosystems. We therefore find that, during glacier retreat, the recently exposed forefield is the most chemically active part of the watershed, making high rates of weathering possible, even when ice losses have caused a switch to cold-based conditions with no delayed subglacial drainage flowpaths. In addition, the drainage system reorganization events result in significant pCO2 depletion in an otherwise high pCO2 system
    corecore