17 research outputs found

    Predictors of surgical complications in boys with hypospadias: data from an international registry

    Get PDF
    Background: Complications are frequently reported after hypospadias repair and there is a need to understand the factors that influence their occurrence. Methods: Data from boys with hypospadias born between 2000 and 2020 were obtained from the International Disorders of Sex Development (I-DSD) Registry. Logistic regressions, fisher’s exact tests and spearman’s correlation tests were performed on the data to assess associations between clinical factors and complication rates. Results: Of the 551 eligible boys, data were available on 160 (29%). Within the cohort, the median (range) External Masculinization Score (EMS) was 6 (2, 9). All presented with one or more additional genital malformation and 61 (38%) presented with additional extragenital malformations. Disorders of androgen action, androgen synthesis and gonadal development were diagnosed in 28 (18%), 22 (14%) and 9 (6%) boys, respectively. The remaining 101 (62%) patients were diagnosed as having non-specific 46,XY Disorders of Sex Development. Eighty (50%) boys had evidence of abnormal biochemistry, and gene variants were identified in 42 (26%). Median age at first hypospadias surgery was 2 years (0, 9), and median length of follow-up was 5 years (0, 17). Postsurgical complications were noted in 102 (64%) boys. There were no significant associations with postsurgical complications. Conclusions: Boys with proximal hypospadias in the I-DSD Registry have high rates of additional comorbidities and a high risk of postoperative complications. No clinical factors were significantly associated with complication rates. High complication rates with no observable cause suggest the involvement of other factors which need investigation

    Synergistic Combination of Electrolysis and Electroporation for Tissue Ablation

    No full text
    Electrolysis, electrochemotherapy with reversible electroporation, nanosecond pulsed electric fields and irreversible electroporation are valuable non-thermal electricity based tissue ablation technologies. This paper reports results from the first large animal study of a new non-thermal tissue ablation technology that employs "Synergistic electrolysis and electroporation" (SEE). The goal of this pre-clinical study is to expand on earlier studies with small animals and use the pig liver to establish SEE treatment parameters of clinical utility. We examined two SEE methods. One of the methods employs multiple electrochemotherapy-type reversible electroporation magnitude pulses, designed in such a way that the charge delivered during the electroporation pulses generates the electrolytic products. The second SEE method combines the delivery of a small number of electrochemotherapy magnitude electroporation pulses with a low voltage electrolysis generating DC current in three different ways. We show that both methods can produce lesion with dimensions of clinical utility, without the need to inject drugs as in electrochemotherapy, faster than with conventional electrolysis and with lower electric fields than irreversible electroporation and nanosecond pulsed ablation
    corecore