388 research outputs found

    Constitutional Law -- Freedom of Speech in the Military

    Get PDF

    Measurement of the Light Antiquark Flavor Asymmetry in the Nucleon Sea

    Get PDF
    A precise measurement of the ratio of Drell-Yan yields from an 800 GeV/c proton beam incident on hydrogen and deuterium targets is reported. Over 140,000 Drell-Yan muon pairs with dimuon mass M_{mu+ mu-} >= 4.5 GeV/c^2 were recorded. From these data, the ratio of anti-down (dbar) to anti-up (ubar) quark distributions in the proton sea is determined over a wide range in Bjorken-x. A strong x dependence is observed in the ratio dbar/ubar, showing substantial enhancement of dbar with respect to ubar for x<0.2. This result is in fair agreement with recent parton distribution parameterizations of the sea. For x>0.2, the observed dbar/ubar ratio is much nearer unity than given by the parameterizations.Comment: REVTeX, to be published in Phys. Rev. Let

    Probing Hot Gas in Galaxy Groups through the Sunyaev-Zeldovich Effect

    Full text link
    We investigate the potential of exploiting the Sunyaev-Zeldovich effect (SZE) to study the properties of hot gas in galaxy groups. It is shown that, with upcoming SZE surveys, one can stack SZE maps around galaxy groups of similar halo masses selected from large galaxy redshift surveys to study the hot gas in halos represented by galaxy groups. We use various models for the hot halo gas to study how the expected SZE signals are affected by gas fraction, equation of state, halo concentration, and cosmology. Comparing the model predictions with the sensitivities expected from the SPT, ACT and Planck surveys shows that a SPT-like survey can provide stringent constraints on the hot gas properties for halos with masses M ~> 10^{13} h^{-1}Msun. We also explore the idea of using the cross correlation between hot gas and galaxies of different luminosity to probe the hot gas in dark matter halos without identifying galaxy groups to represent dark halos. Our results show that, with a galaxy survey as large as the Sloan Digital Sky Survey and with the help of the conditional luminosity function (CLF) model, one can obtain stringent constraints on the hot gas properties in halos with masses down to 10^{13} h^{-1}Msun. Thus, the upcoming SZE surveys should provide a very promising avenue to probe the hot gas in relatively low-mass halos where the majority of L*-galaxies reside.Comment: 22 pages, 16 figures, accepted for publication on MNRA

    Protein Microarray On-Demand: A Novel Protein Microarray System

    Get PDF
    We describe a novel, simple and low-cost protein microarray strategy wherein the microarrays are generated by printing expression ready plasmid DNAs onto slides that can be converted into protein arrays on-demand. The printed expression plasmids serve dual purposes as they not only direct the synthesis of the protein of interest; they also serve to capture the newly synthesized proteins through a high affinity DNA-protein interaction. To accomplish this we have exploited the high-affinity binding (∼3–7×10 −13 M) of E. coli Tus protein to Ter, a 20 bp DNA sequence involved in the regulation of E. coli DNA replication. In our system, each protein of interest is synthesized as a Tus fusion protein and each expression construct directing the protein synthesis contains embedded Ter DNA sequence. The embedded Ter sequence functions as a capture reagent for the newly synthesized Tus fusion protein. This “all DNA” microarray can be converted to a protein microarray on-demand without need for any additional capture reagent.

    dbar/ubar Asymmetry and the Origin of the Nucleon Sea

    Full text link
    The Drell-Yan cross section ratios, σ(p+d)/σ(p+p)\sigma(p+d)/\sigma(p+p), measured in Fermilab E866, have led to the first determination of dˉ(x)/uˉ(x)\bar d(x) / \bar u(x), dˉ(x)uˉ(x)\bar d(x) - \bar u(x), and the integral of dˉ(x)uˉ(x)\bar d(x) - \bar u(x) for the proton over the range 0.02x0.3450.02 \le x \le 0.345. The E866 results are compared with predictions based on parton distribution functions and various theoretical models. The relationship between the E866 results and the NMC measurement of the Gottfried integral is discussed. The agreement between the E866 results and models employing virtual mesons indicates these non-perturbative processes play an important role in the origin of the dˉ\bar d, uˉ\bar u asymmetry in the nucleon sea.Comment: 5 pages, 3 figures, ReVTe

    Transfer learning for galaxy morphology from one survey to another

    Get PDF
    © 2018 The Author(s). Published by Oxford University Press on behalf of the Royal Astronomical Society.Deep Learning (DL) algorithms for morphological classification of galaxies have proven very successful, mimicking (or even improving) visual classifications. However, these algorithms rely on large training samples of labelled galaxies (typically thousands of them). A key question for using DL classifications in future Big Data surveys is how much of the knowledge acquired from an existing survey can be exported to a new dataset, i.e. if the features learned by the machines are meaningful for different data. We test the performance of DL models, trained with Sloan Digital Sky Survey (SDSS) data, on Dark Energy survey (DES) using images for a sample of \sim5000 galaxies with a similar redshift distribution to SDSS. Applying the models directly to DES data provides a reasonable global accuracy (\sim 90%), but small completeness and purity values. A fast domain adaptation step, consisting in a further training with a small DES sample of galaxies (\sim500-300), is enough for obtaining an accuracy > 95% and a significant improvement in the completeness and purity values. This demonstrates that, once trained with a particular dataset, machines can quickly adapt to new instrument characteristics (e.g., PSF, seeing, depth), reducing by almost one order of magnitude the necessary training sample for morphological classification. Redshift evolution effects or significant depth differences are not taken into account in this study.Peer reviewedFinal Accepted Versio

    The International Gene Trap Consortium Website: a portal to all publicly available gene trap cell lines in mouse

    Get PDF
    Gene trapping is a method of generating murine embryonic stem (ES) cell lines containing insertional mutations in known and novel genes. A number of international groups have used this approach to create sizeable public cell line repositories available to the scientific community for the generation of mutant mouse strains. The major gene trapping groups worldwide have recently joined together to centralize access to all publicly available gene trap lines by developing a user-oriented Website for the International Gene Trap Consortium (IGTC). This collaboration provides an impressive public informatics resource comprising ∼45 000 well-characterized ES cell lines which currently represent ∼40% of known mouse genes, all freely available for the creation of knockout mice on a non-collaborative basis. To standardize annotation and provide high confidence data for gene trap lines, a rigorous identification and annotation pipeline has been developed combining genomic localization and transcript alignment of gene trap sequence tags to identify trapped loci. This information is stored in a new bioinformatics database accessible through the IGTC Website interface. The IGTC Website () allows users to browse and search the database for trapped genes, BLAST sequences against gene trap sequence tags, and view trapped genes within biological pathways. In addition, IGTC data have been integrated into major genome browsers and bioinformatics sites to provide users with outside portals for viewing this data. The development of the IGTC Website marks a major advance by providing the research community with the data and tools necessary to effectively use public gene trap resources for the large-scale characterization of mammalian gene function
    corecore