14 research outputs found

    Effet de la RNase HI sur l’expression génique et sur le surenroulement de l’ADN chez Escherichia coli

    Full text link
    Les R-loops générés durant la transcription sont impliqués dans de nombreuse fonctions incluant la réplication, la recombinaison et l’expression génique tant chez les procaryotes que chez les eucaryotes. Plusieurs études ont montré qu’un excès de supertours négatifs et des séquences riches en bases G induisent la formation de R-loops. Jusqu’à maintenant, nos résultats nous ont permis d’établir un lien direct entre les topoisomérases, le niveau de surenroulement et la formation de R-loops. Cependant, le rôle physiologique des R-loops est encore largement inconnu. Dans le premier article, une étude détaillée du double mutant topA rnhA a montré qu’une déplétion de RNase HI induit une réponse cellulaire qui empêche la gyrase d’introduire des supertours. Il s’agit ici, de la plus forte évidence supportant les rôles majeurs de la RNase HI dans la régulation du surenroulement de l’ADN. Nos résultats ont également montré que les R-loops pouvaient inhiber l’expression génique. Cependant, les mécanismes exacts sont encore mal connus. L’accumulation d’ARNs courts au détriment d’ARNs pleine longueur peut être causée soit par des blocages durant l’élongation de la transcription soit par la dégradation des ARNs pleine longueur. Dans le deuxième article, nous montrons que l’hypersurenroulement négatif peut mener à la formation de R-loops non-spécifiques (indépendants de la séquence nucléotidique). La présence de ces derniers, engendre une dégradation massive des ARNs et ultimement à la formation de protéines tronquées. En conclusion, ces études montrent l’évidence d’un lien étroit entre la RNase HI, la formation des R-loops, la topologie de l’ADN et l’expression génique. De plus, elles attestent de la présence d’un nouvel inhibiteur de gyrase ou d’un mécanisme encore inconnu capable de réguler son activité. Cette surprenante découverte est élémentaire sachant que de nombreux antibiotiques ciblent la gyrase. Finalement, ces études pourront servir également de base à des recherches similaires chez les cellules eucaryotes.R-loops generated during transcription elongation are implicated in many DNA reactions, including replication, recombination and gene expression both in prokaryotes and in eukaryotes. Many studies have shown that negative supercoils excess and G-rich sequences induce the formation of R-loops. Up to now, our results allow us to establish a direct link between topoisomerases, supercoiling level, and the formation of R-loops. However, what the physiological significance, if any, of R-loops is still largely unknown. In the first article, a detailed study on double topA rnhA mutants showed that the depletion of RNase HI activity induces a cellular response which renders gyrase unable to perform supercoils. This is the first evidence implicating RNase HI as a major player in DNA supercoiling regulation. Our results also show that R-loops formation can lead to the inhibition of gene expression. However, the exact mechanism(s) leading to the inhibition of gene expression are not yet understood. The accumulation of shorter than full length RNAs could be caused by road-blocks during transcription elongation or by the degradation of full length RNAs. In the second article, we show that hypernegative supercoiling can lead to sequence independent R-loop formation. The physiological consequence is extensive RNA degradation which ultimately culminates in the formation of truncated proteins. In conclusion, this study clearly shows a close link between RNase HI activity, R-loop formation, DNA topology and gene expression. In addition, this study also provides some evidence for the synthesis of a gyrase inhibitor that can regulate gyrase activity directly or indirectly via unidentified mechanisms. This surprising observation is still preliminary taking into consideration that many antibiotics target gyrase. Finally results from this study could open up avenues for research in eukaryotes

    Truncating Mutations of MAGEL2, a Gene within the Prader-Willi Locus, Are Responsible for Severe Arthrogryposis

    Get PDF
    Arthrogryposis multiplex congenita (AMC) is characterized by the presence of multiple joint contractures resulting from reduced or absent fetal movement. Here, we report two unrelated families affected by lethal AMC. By genetic mapping and whole-exome sequencing in a multiplex family, a heterozygous truncating MAGEL2 mutation leading to frameshift and a premature stop codon (c.1996delC, p.Gln666Serfs∗36) and inherited from the father was identified in the probands. In another family, a distinct heterozygous truncating mutation leading to frameshift (c.2118delT, p.Leu708Trpfs∗7) and occurring de novo on the paternal allele of MAGEL2 was identified in the affected individual. In both families, RNA analysis identified the mutated paternal MAGEL2 transcripts only in affected individuals. MAGEL2 is one of the paternally expressed genes within the Prader-Willi syndrome (PWS) locus. PWS is associated with, to varying extents, reduced fetal mobility, severe infantile hypotonia, childhood-onset obesity, hypogonadism, and intellectual disability. MAGEL2 mutations have been recently reported in affected individuals with features resembling PWS and called Schaaf-Yang syndrome. Here, we show that paternal MAGEL2 mutations are also responsible for lethal AMC, recapitulating the clinical spectrum of PWS and suggesting that MAGEL2 is a PWS-determining gene

    Hypernegative Supercoiling Inhibits Growth by Causing RNA Degradationâ–¿

    No full text
    Transcription-induced hypernegative supercoiling is a hallmark of Escherichia coli topoisomerase I (topA) mutants. However, its physiological significance has remained unclear. Temperature downshift of a mutant yielded transient growth arrest and a parallel increase in hypernegative supercoiling that was more severe with lower temperature. Both properties were alleviated by overexpression of RNase HI. While ribosomes in extracts showed normal activity when obtained during growth arrest, mRNA on ribosomes was reduced for fis and shorter for crp, polysomes were much less abundant relative to monosomes, and protein synthesis rate dropped, as did the ratio of large to small proteins. Altered processing and degradation of lacA and fis mRNA was also observed. These data are consistent with truncation of mRNA during growth arrest. These effects were not affected by a mutation in the gene encoding RNase E, indicating that this endonuclease is not involved in the abnormal mRNA processing. They were also unaffected by spectinomycin, an inhibitor of protein synthesis, which argued against induction of RNase activity. In vitro transcription revealed that R-loop formation is more extensive on hypernegatively supercoiled templates. These results allow us, for the first time, to present a model by which hypernegative supercoiling inhibits growth. In this model, the introduction of hypernegative supercoiling by gyrase facilitates degradation of nascent RNA; overproduction of RNase HI limits the accumulation of hypernegative supercoiling, thereby preventing extensive RNA degradation

    Transcriptomic studies and assessment of Yersinia pestis reference genes in various conditions

    No full text
    Abstract Reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR) is a very sensitive widespread technique considered as the gold standard to explore transcriptional variations. While a particular methodology has to be followed to provide accurate results many published studies are likely to misinterpret results due to lack of minimal quality requirements. Yersinia pestis is a highly pathogenic bacterium responsible for plague. It has been used to propose a ready-to-use and complete approach to mitigate the risk of technical biases in transcriptomic studies. The selection of suitable reference genes (RGs) among 29 candidates was performed using four different methods (GeNorm, NormFinder, BestKeeper and the Delta-Ct method). An overall comprehensive ranking revealed that 12 following candidate RGs are suitable for accurate normalization: gmk, proC, fabD, rpoD, nadB, rho, thrA, ribD, mutL, rpoB, adk and tmk. Some frequently used genes like 16S RNA had even been found as unsuitable to study Y. pestis. This methodology allowed us to demonstrate, under different temperatures and states of growth, significant transcriptional changes of six efflux pumps genes involved in physiological aspects as antimicrobial resistance or virulence. Previous transcriptomic studies done under comparable conditions had not been able to highlight these transcriptional modifications. These results highlight the importance of validating RGs prior to the normalization of transcriptional expression levels of targeted genes. This accurate methodology can be extended to any gene of interest in Y. pestis. More generally, the same workflow can be applied to identify and validate appropriate RGs in other bacteria to study transcriptional variations

    Tolerance engineering in Deinococcus geothermalis by heterologous efflux pumps

    No full text
    International audienceAbstract Producing industrially significant compounds with more environmentally friendly represents a challenging task. The large-scale production of an exogenous molecule in a host microfactory can quickly cause toxic effects, forcing the cell to inhibit production to survive. The key point to counter these toxic effects is to promote a gain of tolerance in the host, for instance, by inducing a constant flux of the neo-synthetized compound out of the producing cells. Efflux pumps are membrane proteins that constitute the most powerful mechanism to release molecules out of cells. We propose here a new biological model, Deinococcus geothermalis , organism known for its ability to survive hostile environment; with the aim of coupling the promising industrial potential of this species with that of heterologous efflux pumps to promote engineering tolerance. In this study, clones of D. geothermalis containing various genes encoding chromosomal heterologous efflux pumps were generated. Resistant recombinants were selected using antibiotic susceptibility tests to screen promising candidates. We then developed a method to determine the efflux efficiency of the best candidate, which contains the gene encoding the MdfA of Salmonella enterica serovar Choleraesuis. We observe 1.6 times more compound in the external medium of the hit recombinant than that of the WT at early incubation time. The data presented here will contribute to better understanding of the parameters required for efficient production in D. geothermalis

    Genomic and RT-qPCR analysis of trimethoprim-sulfamethoxazole and meropenem resistance in Burkholderia pseudomallei clinical isolates.

    No full text
    BackgroundMelioidosis is an endemic disease in southeast Asia and northern Australia caused by the saprophytic bacteria Burkholderia pseudomallei, with a high mortality rate. The clinical presentation is multifaceted, with symptoms ranging from acute septicemia to multiple chronic abscesses. Here, we report a chronic case of melioidosis in a patient who lived in Malaysia in the 70s and was suspected of contracting tuberculosis. Approximately 40 years later, in 2014, he was diagnosed with pauci-symptomatic melioidosis during a routine examination. Four strains were isolated from a single sample. They showed divergent morphotypes and divergent antibiotic susceptibility, with some strains showing resistance to trimethoprim-sulfamethoxazole and fluoroquinolones. In 2016, clinical samples were still positive for B. pseudomallei, and only one type of strain, showing atypical resistance to meropenem, was isolated.Principal findingsWe performed whole genome sequencing and RT-qPCR analysis on the strains isolated during this study to gain further insights into their differences. We thus identified two types of resistance mechanisms in these clinical strains. The first one was an adaptive and transient mechanism that disappeared during the course of laboratory sub-cultures; the second was a mutation in the efflux pump regulator amrR, associated with the overexpression of the related transporter.ConclusionThe development of such mechanisms may have a clinical impact on antibiotic treatment. Indeed, their transient nature could lead to an undiagnosed resistance. Efflux overexpression due to mutation leads to an important multiple resistance, reducing the effectiveness of antibiotics during treatment

    Tecovirimat is highly efficient on the Monkeypox virus lineage responsible for the international 2022 outbreak

    No full text
    The ongoing monkeypox virus (MPXV) outbreak is the largest ever recorded outside of Africa. Genomic analysis revealed a divergent phylogenetic lineage within clade 3, and atypical clinical presentations have been noted. We report the sequencing and isolation of the virus from the first clinical case diagnosed in France in May 2022. We tested the in vitro effect of tecovirimat (ST-246), a FDA approved drug, against this novel strain, showing efficacy at the nanomolar range. In comparison, cidofovir showed activity at micromolar concentrations. These results and the safety profile of tecovirimat strongly support its use in clinical care of severe forms for the 2022 MPXV outbreak

    Investigation of a COVID-19 outbreak on the Charles de Gaulle aircraft carrier, March to April 2020: a retrospective cohort study

    No full text
    International audienceBackground SARS-CoV-2 emergence was a threat for armed forces. A COVID-19 outbreak occurred on the French aircraft carrier Charles de Gaulle from mid-March to mid-April 2020. Aim To understand how the virus was introduced, circulated then stopped circulation, risk factors for infection and severity, and effectiveness of preventive measures. Methods We considered the entire crew as a cohort and collected personal, clinical, biological, and epidemiological data. We performed viral genome sequencing and searched for SARS-CoV-2 in the environment. Results The attack rate was 65% (1,148/1,767); 1,568 (89%) were included. The male:female ratio was 6.9, and median age was 29 years (IQR: 24–36). We examined four clinical profiles: asymptomatic (13.0%), non-specific symptomatic (8.1%), specific symptomatic (76.3%), and severe (i.e. requiring oxygen therapy, 2.6%). Active smoking was not associated with severe COVID-19; age and obesity were risk factors. The instantaneous reproduction rate (R t ) and viral sequencing suggested several introductions of the virus with 4 of 5 introduced strains from within France, with an acceleration of R t when lifting preventive measures. Physical distancing prevented infection (adjusted OR: 0.55; 95% CI: 0.40–0.76). Transmission may have stopped when the proportion of infected personnel was large enough to prevent circulation (65%; 95% CI: 62–68). Conclusion Non-specific clinical pictures of COVID-19 delayed detection of the outbreak. The lack of an isolation ward made it difficult to manage transmission; the outbreak spread until a protective threshold was reached. Physical distancing was effective when applied. Early surveillance with adapted prevention measures should prevent such an outbreak
    corecore