270 research outputs found
Application of Time Transfer Function to McVittie Spacetime: Gravitational Time Delay and Secular Increase in Astronomical Unit
We attempt to calculate the gravitational time delay in a time-dependent
gravitational field, especially in McVittie spacetime, which can be considered
as the spacetime around a gravitating body such as the Sun, embedded in the
FLRW (Friedmann-Lema\^itre-Robertson-Walker) cosmological background metric. To
this end, we adopt the time transfer function method proposed by Le
Poncin-Lafitte {\it et al.} (Class. Quant. Grav. 21:4463, 2004) and Teyssandier
and Le Poncin-Lafitte (Class. Quant. Grav. 25:145020, 2008), which is
originally related to Synge's world function and enables to
circumvent the integration of the null geodesic equation. We re-examine the
global cosmological effect on light propagation in the solar system. The
round-trip time of a light ray/signal is given by the functions of not only the
spacial coordinates but also the emission time or reception time of light
ray/signal, which characterize the time-dependency of solutions. We also apply
the obtained results to the secular increase in the astronomical unit, reported
by Krasinsky and Brumberg (Celest. Mech. Dyn. Astron. 90:267, 2004), and we
show that the leading order terms of the time-dependent component due to
cosmological expansion is 9 orders of magnitude smaller than the observed value
of , i.e., ~[m/century]. Therefore, it is not possible
to explain the secular increase in the astronomical unit in terms of
cosmological expansion.Comment: 13 pages, 2 figures, accepted for publication in General Relativity
and Gravitatio
Description of superdeformed nuclei in the interacting boson model
The interacting boson model is extended to describe the spectroscopy of
superdeformed bands. Microscopic structure of the model in the second minimum
is discussed and superdeformed bosons are introduced as the new building
blocks. Solutions of a quadrupole Hamiltonian are implemented through the
expansion method. Effects of the quadrupole parameters on dynamic moment of
inertia and electric quadrupole transition rates are discussed and the results
are used in a description of superdeformed bands in the Hg-Pb and Gd-Dy
regions.Comment: 18 pages revtex, 9 figures available upon reques
Cosmological expansion and local systems: a Lema\^{i}tre-Tolman-Bondi model
We propose a Lema\^{i}tre-Tolman-Bondi system mimicking a two-body system to
address the problem of the cosmological expansion versus local dynamics. This
system is strongly bound but participates in the cosmic expansion and is
exactly comoving with the cosmic substratum
Perspectives on a Way Forward to Implementation of Precision Medicine in Patients With Diabetic Kidney Disease; Results of a Stakeholder Consensus-Building Meeting
Aim: This study aimed to identify from different stakeholders the benefits and obstacles of implementing precision medicine in diabetic kidney disease (DKD) and to build consensus about a way forward in order to treat, prevent, or even reverse this disease. Methods: As part of an ongoing effort of moving implementation of precision medicine in DKD forward, a two-day consensus-building meeting was organized with different stakeholders involved in drug development and patient care in DKD, including patients, patient representatives, pharmaceutical industry, regulatory agencies representatives, health technology assessors, healthcare professionals, basic scientists, and clinical academic researchers. The meeting consisted of plenary presentations and discussions, and small group break-out sessions. Discussion topics were based on a symposium, focus groups and literature search. Benefits, obstacles and potential solutions toward implementing precision medicine were discussed. Results from the break-out sessions were presented in plenary and formed the basis of a broad consensus discussion to reach final conclusions. Throughout the meeting, participants answered several statement and open-ended questions on their mobile device, using a real-time online survey tool. Answers to the statement questions were analyzed descriptively. Results of the open-ended survey questions, the break-out sessions and the consensus discussion were analyzed qualitatively. Results and conclusion: Seventy-one participants from 26 countries attended the consensus-building meeting in Amsterdam, April 2019. During the opening plenary on the first day, the participants agreed with the statement that precision medicine is the way forward in DKD (n = 57, median 90, IQR [75–100]). Lack of efficient tools for implementation in practice and generating robust data were identified as significant obstacles. The identified benefits, e.g., improvement of the benefit-risk ratio of treatment, offer substantive incentives to find solutions for the identified obstacles. Earlier and increased multi-stakeholder collaboration and specific training may provide solutions to alter clinical and regulatory guidelines that lie at the basis of both obstacles and solutions. At the end of the second day, the opinion of the participants toward precision medicine in DKD was somewhat more nuanced (n = 45, median 83, IQR [70–92]) and they concluded that precision medicine is an important way forward in improving the treatment of patients with DKD
Discovery of the Binary Pulsar PSR B1259-63 in Very-High-Energy Gamma Rays around Periastron with H.E.S.S
We report the discovery of very-high-energy (VHE) gamma-ray emission of the
binary system PSR B1259-63/SS 2883 of a radio pulsar orbiting a massive,
luminous Be star in a highly eccentric orbit. The observations around the 2004
periastron passage of the pulsar were performed with the four 13 m Cherenkov
telescopes of the H.E.S.S. experiment, recently installed in Namibia and in
full operation since December 2003. Between February and June 2004, a gamma-ray
signal from the binary system was detected with a total significance above 13
sigma. The flux was found to vary significantly on timescales of days which
makes PSR B1259-63 the first variable galactic source of VHE gamma-rays
observed so far. Strong emission signals were observed in pre- and
post-periastron phases with a flux minimum around periastron, followed by a
gradual flux decrease in the months after. The measured time-averaged energy
spectrum above a mean threshold energy of 380 GeV can be fitted by a simple
power law F_0(E/1 TeV)^-Gamma with a photon index Gamma =
2.7+-0.2_stat+-0.2_sys and flux normalisation F_0 = (1.3+-0.1_stat+-0.3_sys)
10^-12 TeV^-1 cm^-2 s^-1. This detection of VHE gamma-rays provides unambiguous
evidence for particle acceleration to multi-TeV energies in the binary system.
In combination with coeval observations of the X-ray synchrotron emission by
the RXTE and INTEGRAL instruments, and assuming the VHE gamma-ray emission to
be produced by the inverse Compton mechanism, the magnetic field strength can
be directly estimated to be of the order of 1 G.Comment: 10 pages, 8 figures, accepted in Astronomy and Astrophysics on 2 June
2005, replace: document unchanged, replaced author field in astro-ph entry -
authors are all members of the H.E.S.S. collaboration and three additional
authors (99+3, see document
Green Urbanism and its Application to Singapore
Green urbanism has been applied to cities but not in Asia. Seven characteristics of green urbanism are outlined and then applied to Singapore. The Renewable City is not yet a concept for Singapore. The Carbon Neutral City is being developed for an island Palau Ubin and by some firms but not to significant sectors or parts of urban Singapore. The Distributed City is being developed around Singapore’s polycentric model but needs specific infrastructure plans similar to ones developed by Singapore for Tianjin Eco-City. The Biophillic City is being developed as a world first through its Skyrise Greenery initiative and urban landscaping. The Eco-Efficient City is also being demonstrated through Singapore closing the loop on their water and solid waste systems. The Place Based City is very evident in all its 22 sub centres. And the Sustainable Transport City is an Asian leader in integrated transport planning though there are signs of this becoming harder to achieve
The history of rainfall data time-resolution in a wide variety of geographical areas
Collected rainfall records by gauges lead to key forcings in most hydrological studies. Depending on sensor type and recording systems, such data are characterized by different time-resolutions (or temporal aggregations), ta. We present an historical analysis of the time-evolution of ta based on a large database of rain gauge networks operative in many study areas. Globally, ta data were collected for 25,423 rain gauge stations across 32 geo graphic areas, with larger contributions from Australia, USA, Italy and Spain. For very old networks early re cordings were manual with coarse time-resolution, typically daily or sometimes monthly. With a few exceptions, mechanical recordings on paper rolls began in the first half of the 20th century, typically with ta of 1 h or 30 min. Digital registrations started only during the last three decades of the 20th century. This short period limits investigations that require long time-series of sub-daily rainfall data, e.g, analyses of the effects of climate change on short-duration (sub-hourly) heavy rainfall. In addition, in the areas with rainfall data characterized for many years by coarse time-resolutions, annual maximum rainfall depths of short duration can be potentially underestimated and their use would produce errors in the results of successive applications. Currently, only 50% of the stations provide useful data at any time-resolution, that practically means ta = 1 min. However, a sig nificant reduction of these issues can be obtained through the information content of the present database. Finally, we suggest an integration of the database by including additional rain gauge networks to enhance its usefulness particularly in a comparative analysis of the effects of climate change on extreme rainfalls of short duration available in different locations
A low level of extragalactic background light as revealed by big gamma-rays from blazars
The diffuse extragalactic background light consists of the sum of the starlight emitted by galaxies through the history of the Universe, and it could also have an important contribution from the 'first stars', which may have formed before galaxy formation began. Direct measurements are difficult and not yet conclusive, owing to the large uncertainties caused by the bright foreground emission associated with zodiacal light1. An alternative approach2, 3, 4, 5 is to study the absorption features imprinted on the -ray spectra of distant extragalactic objects by interactions of those photons with the background light photons6. Here we report the discovery of -ray emission from the blazars7 H 2356 - 309 and 1ES 1101 - 232, at redshifts z = 0.165 and z = 0.186, respectively. Their unexpectedly hard spectra provide an upper limit on the background light at optical/near-infrared wavelengths that appears to be very close to the lower limit given by the integrated light of resolved galaxies8. The background flux at these wavelengths accordingly seems to be strongly dominated by the direct starlight from galaxies, thus excluding a large contribution from other sources—in particular from the first stars formed9. This result also indicates that intergalactic space is more transparent to -rays than previously thought
- …