42 research outputs found

    Scalable Synthesis of Few-Layered 2D Tungsten Diselenide (2H-WSe2) Nanosheets Directly Grown on Tungsten (W) Foil Using Ambient-Pressure Chemical Vapor Deposition for Reversible Li-Ion Storage

    Get PDF
    We report a facile two-furnace APCVD synthesis of 2H-WSe2. A systematic study of the process parameters is performed to show the formation of the phase-pure material. Extensive characterization of the bulk and exfoliated material confirm that 2H-WSe2 is layered (i.e., 2D). X-ray diffraction (XRD) confirms the phase, while high-resolution scanning electron microscopy (HRSEM), high-resolution transmission electron microscopy (HRTEM), and atomic force microscopy (AFM) clarify the morphology of the material. Focused ion beam scanning electron microscopy (FIB-SEM) estimates the depth of the 2H-WSe2 formed on W foil to be around 5-8 μm, and Raman/UV-vis measurements prove the quality of the exfoliated 2H-WSe2. Studies on the redox processes of lithium-ion batteries (LiBs) show an increase in capacity up to 500 cycles. On prolonged cycling, the discharge capacity up to the 50th cycle at 250 mA/g of the material shows a stable value of 550 mAh/g. These observations indicate that exfoliated 2H-WSe2 has promising applications as an LiB electrode material

    Supercapacitance from cellulose and carbon nanotube nanocomposite fibers

    Get PDF
    Copyright © 2013 American Chemical SocietyACS AuthorChoice open access articleMultiwalled carbon nanotube (MWNT)/cellulose composite nanofibers have been prepared by electrospinning a MWNT/cellulose acetate blend solution followed by deacetylation. These composite nanofibers were then used as precursors for carbon nanofibers (CNFs). The effect of nanotubes on the stabilization of the precursor and microstructure of the resultant CNFs were investigated using thermogravimetric analysis, transmission electron microscopy and Raman spectroscopy. It is demonstrated that the incorporated MWNTs reduce the activation energy of the oxidative stabilization of cellulose nanofibers from 230 to 180 kJ mol–1. They also increase the crystallite size, structural order, and electrical conductivity of the activated CNFs (ACNFs). The surface area of the ACNFs increased upon addition of nanotubes which protrude from the fiber leading to a rougher surface. The ACNFs were used as the electrodes of a supercapacitor. The electrochemical capacitance of the ACNF derived from pure cellulose nanofibers is demonstrated to be 105 F g–1 at a current density of 10 A g–1, which increases to 145 F g–1 upon the addition of 6% of MWNTs.The authors would like to thank the [Engineering and Physical Sciences Research Council] EPSRC (EP/F036914/1 and EP/I023879/1), Guangdong and Shenzhen Innovative Research Team Program (No. 2011D052,KYPT20121228160843692), National Natural Science Foundation of China (Grant No. 21201175), R&D Funds for basic Research Program of Shenzhen (Grant No. JCYJ20120615140007998), and the Universities of Exeter and Manchester for funding this research

    A practical perspective on the potential of rechargeable Mg batteries

    Get PDF
    Emerging energy storage systems based on abundant and cost-effective materials are key to overcome the global energy and climate crisis of the 21st century. Rechargeable Magnesium Batteries (RMB), based on Earth-abundant magnesium, can provide a cheap and environmentally responsible alternative to the benchmark Li-ion technology, especially for large energy storage applications. Currently, RMB technology is the subject of intense research efforts at laboratory scale. However, these emerging approaches must be placed in a real-world perspective to ensure that they satisfy key technological requirements. In an attempt to bridge the gap between laboratory advancements and industrial development demands, herein, we report the first non-aqueous multilayer RMB pouch cell prototypes and propose a roadmap for a new advanced RMB chemistry. Through this work, we aim to show the great unrealized potential of RMBs

    A practical perspective on the potential of rechargeable Mg batteries

    Get PDF
    Emerging energy storage systems based on abundant and cost-effective materials are key to overcome the global energy and climate crisis of the 21st century. Rechargeable Magnesium Batteries (RMB), based on Earth-abundant magnesium, can provide a cheap and environmentally responsible alternative to the benchmark Li-ion technology, especially for large energy storage applications. Currently, RMB technology is the subject of intense research efforts at laboratory scale. However, these emerging approaches must be placed in a real-world perspective to ensure that they satisfy key technological requirements. In an attempt to bridge the gap between laboratory advancements and industrial development demands, herein, we report the first non-aqueous multilayer RMB pouch cell prototypes and propose a roadmap for a new advanced RMB chemistry. Through this work, we aim to show the great unrealized potential of RMBs.This work was funded by European Union's Horizon 2020 research and innovation program under the FET Proactive call with grant agreement no 824066 via the “E-MAGIC” project

    Preparation and Application of Electrodes in Capacitive Deionization (CDI): a State-of-Art Review

    Get PDF
    As a promising desalination technology, capacitive deionization (CDI) have shown practicality and cost-effectiveness in brackish water treatment. Developing more efficient electrode materials is the key to improving salt removal performance. This work reviewed current progress on electrode fabrication in application of CDI. Fundamental principal (e.g. EDL theory and adsorption isotherms) and process factors (e.g. pore distribution, potential, salt type and concentration) of CDI performance were presented first. It was then followed by in-depth discussion and comparison on properties and fabrication technique of different electrodes, including carbon aerogel, activated carbon, carbon nanotubes, graphene and ordered mesoporous carbon. Finally, polyaniline as conductive polymer and its potential application as CDI electrode-enhancing materials were also discussed

    Renewable hydrogen and carbon nanotubes from biodiesel waste glycerol

    Get PDF
    In this report, we introduce a novel and commercially viable method to recover renewable hydrogen and carbon nanotubes from waste glycerol produced in the biodiesel process. Gas-phase catalytic reforming converts glycerol to clean hydrogen fuel and by replacing the problematical coke formed on the catalyst with high value carbon nanotubes, added value can be realised. Additional benefits of around 2.8 kg CNTs from the reforming of 1 tonne of glycerol and the production of 500 Nm3 H2 could have a considerable impact on the economics of glycerol utilization. Thereby, the contribution of this research will be a significant step forward in solving a current major technical and economic challenge faced by the biofuels industry

    Pressure-induced amorphization of La(1/3)NbO3

    No full text
    La(1/3)NbO(3), an A-site cation deficient double perovskite, has been studied under pressure by synchrotron X-ray powder diffraction and Raman spectroscopy. In contrast to other highly distorted perovskites, transforming to post-perovskite on compression, La(1/3)NbO(3) undergoes irreversible pressure induced amorphization at similar to 14.5 GPa. Over a wide range of pressure before that transition it presents an almost linear volume decrease versus pressure, accompanied by convergence form orthorhombic to a cubic unit cell. The Raman spectroscopy also shows an amorphization at the same pressure. However, where upon full decompression the X-ray diffraction pattern remains amorphous, new Raman peaks become active. (C) 2011 Elsevier B.V. All rights reserved

    High-pressure structural studies of LixLa1/3NbO3Li_{x} La_{1/3}NbO_{3} (x = 1/6, 1/3, 1/2, 2/3)

    No full text
    The high-pressure behavior of LixLa1/3NbO3 (x = 1/6, 1/3, 1/2, 2/3) perovskites where Li cations were substituted for the existing vacancies was studied using synchrotron X-ray diffraction. It was shown that all these materials undergo irreversible pressure-induced amorphization around 14.5 GPa regardless of the Li concentration. The Li-inserted materials were found to exhibit a standard pressure response (bulk modulus pressure derivative B0′ ~4) when in the crystalline phase, whereas La1/3NbO3 shows a linear volume contraction versus pressure, i.e., B0′ ~(−1). These results suggest that the structural collapse is not a consequence of cation disorder resulting from the Nb atoms (B-site) migrating to the A-site vacancies. The observed pressure response can be understood by increased occupancy of the A-sites opposing the tilting of the NbO6 octahedra. The pressure evolution of the Nb oxidation state is discussed
    corecore