27 research outputs found

    The first crystal structure of human RNase6 reveals a novel substrate binding and cleavage site arrangement

    Get PDF
    Human RNase 6 is a cationic secreted protein that belongs to the RNase A superfamily. Its expression is induced in neutrophils and monocytes upon bacterial infection, suggesting a role in host defence. We present here the crystal structure of RNase 6 obtained at a 1.72 Å resolution, being the first report for the protein threedimensional structure and thereby setting the basis for functional studies. The structure shows an overall kidney shaped globular fold shared with the other known family members. Three sulphate anions bound to RNase 6 were found, interacting to residues at the main active site (His15, His122 and Gln14) and cationic surface exposed residues (His36, His39, Arg66 and His67). Kinetic characterization, together with prediction of protein -nucleotide complexes by molecular dynamics, was applied to analyse the RNase 6 substrate nitrogenous base and phosphate selectivity. Our results reveal that, although RNase 6 is a moderate catalyst in comparison to the pancreatic RNase type, its structure includes lineage specific features that facilitate its activity towards polymeric nucleotide substrates. In particular, enzyme interactions at the substrate 5' end can provide an endonuclease type cleavage pattern. Interestingly, the RNase 6 crystal structure revealed a novel secondary active site conformed by the His36-His39 dyad that facilitates the polynucleotide substrate catalysis

    Ultraviolet radiation shapes seaweed communities

    Get PDF

    EDUCORE project: a clinical trial, randomised by clusters, to assess the effect of a visual learning method on blood pressure control in the primary healthcare setting

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>High blood pressure (HBP) is a major risk factor for cardiovascular disease (CVD). European hypertension and cardiology societies as well as expert committees on CVD prevention recommend stratifying cardiovascular risk using the SCORE method, the modification of lifestyles to prevent CVD, and achieving good control over risk factors. The EDUCORE (Education and Coronary Risk Evaluation) project aims to determine whether the use of a cardiovascular risk visual learning method - the EDUCORE method - is more effective than normal clinical practice in improving the control of blood pressure within one year in patients with poorly controlled hypertension but no background of CVD;</p> <p>Methods/Design</p> <p>This work describes a protocol for a clinical trial, randomised by clusters and involving 22 primary healthcare clinics, to test the effectiveness of the EDUCORE method. The number of patients required was 736, all between 40 and 65 years of age (n = 368 in the EDUCORE and control groups), all of whom had been diagnosed with HBP at least one year ago, and all of whom had poorly controlled hypertension (systolic blood pressure ≄ 140 mmHg and/or diastolic ≄ 90 mmHg). All personnel taking part were explained the trial and trained in its methodology. The EDUCORE method contemplates the visualisation of low risk SCORE scores using images embodying different stages of a high risk action, plus the receipt of a pamphlet explaining how to better maintain cardiac health. The main outcome variable was the control of blood pressure; secondary outcome variables included the SCORE score, therapeutic compliance, quality of life, and total cholesterol level. All outcome variables were measured at the beginning of the experimental period and again at 6 and 12 months. Information on sex, age, educational level, physical activity, body mass index, consumption of medications, change of treatment and blood analysis results was also recorded;</p> <p>Discussion</p> <p>The EDUCORE method could provide a simple, inexpensive means of improving blood pressure control, and perhaps other health problems, in the primary healthcare setting;</p> <p>Trial registration</p> <p>The trial was registered with ClinicalTrials.gov, number NCT01155973 [<url>http://ClinicalTrials.gov</url>].</p

    From Africa to Europe and back: refugia and range shifts cause high genetic differentiation in the Marbled White butterfly Melanargia galathea

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The glacial-interglacial oscillations caused severe range modifications of biota. Thermophilic species became extinct in the North and survived in southern retreats, e.g. the Mediterranean Basin. These repeated extinction and (re)colonisation events led to long-term isolation and intermixing of populations and thus resulted in strong genetic imprints in many European species therefore being composed of several genetic lineages. To better understand these cycles of repeated expansion and retraction, we selected the Marbled White butterfly <it>Melanargia galathea</it>. Fourty-one populations scattered over Europe and the Maghreb and one population of the sibling taxon <it>M. lachesis </it>were analysed using allozyme electrophoresis.</p> <p>Results</p> <p>We obtained seven distinct lineages applying neighbour joining and STRUCTURE analyses: (i) Morocco, (ii) Tunisia, (iii) Sicily, (iv) Italy and southern France, (v) eastern Balkans extending to Central Europe, (vi) western Balkans with western Carpathian Basin as well as (vii) south-western Alps. The hierarchy of these splits is well matching the chronology of glacial and interglacial cycles since the GĂŒnz ice age starting with an initial split between the <it>galathea </it>group in North Africa and the <it>lachesis </it>group in Iberia. These genetic structures were compared with past distribution patterns during the last glacial stage calculated with distribution models.</p> <p>Conclusions</p> <p>Both methods suggest climatically suitable areas in the Maghreb and the southern European peninsulas with distinct refugia during the last glacial period and underpin strong range expansions to the North during the Postglacial. However, the allozyme patterns reveal biogeographical structures not detected by distribution modelling as two distinct refugia in the Maghreb, two or more distinct refugia at the Balkans and a close link between the eastern Maghreb and Sicily. Furthermore, the genetically highly diverse western Maghreb might have acted as source or speciation centre of this taxon, while the eastern, genetically impoverished Maghreb population might result from a relatively recent recolonisation from Europe via Sicily.</p

    Species' geographic distributions through time: Playing catchup with changing climates

    Get PDF
    This is the author's accepted manuscript.Species’ ranges are often treated as a rather fixed characteristic, rather than a fluid, ever-changing manifestation of their ecological requirements and dispersal abilities. Paleontologists generally have had a more flexible point of view on this issue than neontologists, but each perspective can improve by appreciating the other. Here, we provide an overview of paleontological and neontological perspectives on species’ geographic distributions, focusing on what can be learned about historical variations in distributions. The cross-disciplinary view, we hope, offers some novel perspectives on species-level biogeography

    Multi-wavelength characterization of the blazar S5~0716+714 during an unprecedented outburst phase

    Get PDF
    The BL Lac object S5~0716+714, a highly variable blazar, underwent an impressive outburst in January 2015 (Phase A), followed by minor activity in February (Phase B). The MAGIC observations were triggered by the optical flux observed in Phase A, corresponding to the brightest ever reported state of the source in the R-band. The comprehensive dataset collected is investigated in order to shed light on the mechanism of the broadband emission. Multi-wavelength light curves have been studied together with the broadband Spectral Energy Distributions (SEDs). The data set collected spans from radio, optical photometry and polarimetry, X-ray, high-energy (HE, 0.1 GeV 100 GeV) with MAGIC. The flaring state of Phase A was detected in all the energy bands, providing for the first time a multi-wavelength sample of simultaneous data from the radio band to the VHE. In the constructed SED the \textit{Swift}-XRT+\textit{NuSTAR} data constrain the transition between the synchrotron and inverse Compton components very accurately, while the second peak is constrained from 0.1~GeV to 600~GeV by \textit{Fermi}+MAGIC data. The broadband SED cannot be described with a one-zone synchrotron self-Compton model as it severely underestimates the optical flux in order to reproduce the X-ray to γ\gamma-ray data. Instead we use a two-zone model. The EVPA shows an unprecedented fast rotation. An estimation of the redshift of the source by combined HE and VHE data provides a value of z=0.31±0.02stats±0.05sysz = 0.31 \pm 0.02_{stats} \pm 0.05_{sys}, confirming the literature value. The data show the VHE emission originating in the entrance and exit of a superluminal knot in and out a recollimation shock in the inner jet. A shock-shock interaction in the jet seems responsible for the observed flares and EVPA swing. This scenario is also consistent with the SED modelling

    The first crystal structure of human RNase6 reveals a novel substrate binding and cleavage site arrangement

    No full text
    Human RNase 6 is a cationic secreted protein that belongs to the RNase A superfamily. Its expression is induced in neutrophils and monocytes upon bacterial infection, suggesting a role in host defence. We present here the crystal structure of RNase 6 obtained at a 1.72 Å resolution, being the first report for the protein threedimensional structure and thereby setting the basis for functional studies. The structure shows an overall kidney shaped globular fold shared with the other known family members. Three sulphate anions bound to RNase 6 were found, interacting to residues at the main active site (His15, His122 and Gln14) and cationic surface exposed residues (His36, His39, Arg66 and His67). Kinetic characterization, together with prediction of protein -nucleotide complexes by molecular dynamics, was applied to analyse the RNase 6 substrate nitrogenous base and phosphate selectivity. Our results reveal that, although RNase 6 is a moderate catalyst in comparison to the pancreatic RNase type, its structure includes lineage specific features that facilitate its activity towards polymeric nucleotide substrates. In particular, enzyme interactions at the substrate 5' end can provide an endonuclease type cleavage pattern. Interestingly, the RNase 6 crystal structure revealed a novel secondary active site conformed by the His36-His39 dyad that facilitates the polynucleotide substrate catalysis
    corecore