72 research outputs found

    Emission-Line Galaxies from the Hubble Space Telescope Probing Evolution and Reionization Spectroscopically (PEARS) Grism Survey. II: The Complete Sample

    Get PDF
    We present a full analysis of the Probing Evolution And Reionization Spectroscopically (PEARS) slitess grism spectroscopic data obtained with the Advanced Camera for Surveys on HST. PEARS covers fields within both the Great Observatories Origins Deep Survey (GOODS) North and South fields, making it ideal as a random survey of galaxies, as well as the availability of a wide variety of ancillary observations to support the spectroscopic results. Using the PEARS data we are able to identify star forming galaxies within the redshift volume 0< z<1.5. Star forming regions in the PEARS survey are pinpointed independently of the host galaxy. This method allows us to detect the presence of multiple emission line regions (ELRs) within a single galaxy. 1162 Ha, [OIII] and/or [OII] emission lines have been identified in the PEARS sample of ~906 galaxies down to a limiting flux of ~1e-18 erg/s/cm^2. The ELRs have also been compared to the properties of the host galaxy, including morphology, luminosity, and mass. From this analysis we find three key results: 1) The computed line luminosities show evidence of a flattening in the luminosity function with increasing redshift; 2) The star forming systems show evidence of disturbed morphologies, with star formation occurring predominantly within one effective (half-light) radius. However, the morphologies show no correlation with host stellar mass; and 3) The number density of star forming galaxies with M_* > 1e9} M_sun decreases by an order of magnitude at z<0.5 relative to the number at 0.5<z<0.9 in support of the argument for galaxy downsizing.Comment: Submitted. 48 pages. 19 figures. Accepted to Ap

    AEGIS: The Nature of the Host Galaxies of Low-ionization Outflows at z < 0.6

    Full text link
    We report on a S/N-limited search for low-ionization gas outflows in the spectra of the 0.11 < z < 0.54 objects in the EGS portion of the DEEP2 survey. Doppler shifts from the host galaxy redshifts are systematically searched for in the Na I 5890,96 doublet (Na D). Although the spectral resolution and S/N limit us to study the interstellar gas kinematics from fitting a single doublet component to each observed Na D profile, the typical outflow often seen in local luminous-infrared galaxies (LIRGs) should be detected at >~ 6 sigma in absorption equivalent width down to the survey limiting S/N (~ 5 per pixel) in the continuum around Na D. The detection rate of LIRG-like outflow clearly shows an increasing trend with star-forming activity and infrared luminosity. However, by virtue of not selecting our sample on star formation, we also find a majority of outflows in galaxies on the red sequence in the rest-frame (U-B, M_B) color-magnitude diagram. Most of these red-sequence outflows are of early-type morphology and show the sign of recent star formation in their UV-optical colors; some show enhanced Balmer H-beta absorption lines indicative of poststarburst as well as high dust extinction. These findings demonstrate that outflows outlive starbursts and suggest that galactic-scale outflows play a role in quenching star formation in the host galaxies on their way to the red sequence. The fate of relic winds, as well as the observational constraints on gaseous feedback models, may be studied in galaxies during their poststarburst phase. We also note the presence of inflow candidates in red, early-type galaxies, some with signs of AGNs/LINERs but little evidence for star formation.Comment: 19 pages & 19 figures (emulateapj); the revision to match the published version in Ap

    Dependence of Galaxy Quenching on Halo Mass and Distance from its Centre

    Full text link
    We study the dependence of star-formation quenching on galaxy mass and environment, in the SDSS (z~0.1) and the AEGIS (z~1). It is crucial that we define quenching by low star-formation rate rather than by red colour, given that one third of the red galaxies are star forming. We address stellar mass M*, halo mass Mh, density over the nearest N neighbours deltaN, and distance to the halo centre D. The fraction of quenched galaxies appears more strongly correlated with Mh at fixed M* than with M* at fixed Mh, while for satellites quenching also depends on D. We present the M*-Mh relation for centrals at z~1. At z~1, the dependence of quenching on M* at fixed Mh is somewhat more pronounced than at z~0, but the quenched fraction is low (10%) and the haloes are less massive. For satellites, M*-dependent quenching is noticeable at high D, suggesting a quenching dependence on sub-halo mass for recently captured satellites. At small D, where satellites likely fell in more than a few Gyr ago, quenching strongly depends on Mh, and not on M*. The Mh-dependence of quenching is consistent with theoretical wisdom where virial shock heating in massive haloes shuts down accretion and triggers ram-pressure stripping, causing quenching. The interpretation of deltaN is complicated by the fact that it depends on the number of observed group members compared to N, motivating the use of D as a better measure of local environment.Comment: 23 pages, 13 figures, accepted by MNRA

    AEGIS: Enhancement of Dust-enshrouded Star Formation in Close Galaxy Pairs and Merging Galaxies up to z ~ 1

    Full text link
    Using data from the DEEP2 Galaxy Redshift Survey and HST/ACS imaging in the Extended Groth Strip, we select nearly 100 interacting galaxy systems including kinematic close pairs and morphologically identified merging galaxies. Spitzer MIPS 24 micron fluxes of these systems reflect the current dusty star formation activity, and at a fixed stellar mass (M_{*}) the median infrared luminosity (L_{IR}) among merging galaxies and close pairs of blue galaxies is twice (1.9 +/- 0.4) that of control pairs drawn from isolated blue galaxies. Enhancement declines with galaxy separation, being strongest in close pairs and mergers and weaker in wide pairs compared to the control sample. At z ~ 0.9, 7.1% +/- 4.3% of massive interacting galaxies (M_{*} > 2*10^{10} M_{solar}) are found to be ULIRGs, compared to 2.6% +/- 0.7% in the control sample. The large spread of IR luminosity to stellar mass ratio among interacting galaxies suggests that this enhancement may depend on the merger stage as well as other as yet unidentified factors (e.g., galaxy structure, mass ratio, orbital characteristics, presence of AGN or bar). The contribution of interacting systems to the total IR luminosity density is moderate (<= 36 %).Comment: 12 pages, 2 figures, 1 table, minor changes to match the proof version, accepted for publication in the ApJL AEGIS Special Issu

    The total infrared luminosity may significantly overestimate the star formation rate of recently quenched galaxies

    Get PDF
    The total infrared (IR) luminosity is very useful for estimating the star formation rate (SFR) of galaxies, but converting the IR luminosity into an SFR relies on assumptions that do not hold for all galaxies. We test the effectiveness of the IR luminosity as an SFR indicator by applying it to synthetic spectral energy distributions generated from three-dimensional hydrodynamical simulations of isolated disc galaxies and galaxy mergers. In general, the SFR inferred from the IR luminosity agrees well with the true instantaneous SFR of the simulated galaxies. However, for the major mergers in which a strong starburst is induced, the SFR inferred from the IR luminosity can overestimate the instantaneous SFR during the post-starburst phase by greater than two orders of magnitude. Even though the instantaneous SFR decreases rapidly after the starburst, the stars that were formed in the starburst remain dust-obscured and thus produce significant IR luminosity. Consequently, use of the IR luminosity as an SFR indicator may cause one to conclude that post-starburst galaxies are still star-forming, whereas in reality, star formation was recently quenched.Comment: Fixed minor typos introduced in v

    Clumpy Galaxies in CANDELS. I. The Definition of UV Clumps and the Fraction of Clumpy Galaxies at 0.5<z<3

    Full text link
    Although giant clumps of stars are crucial to galaxy formation and evolution, the most basic demographics of clumps are still uncertain, mainly because the definition of clumps has not been thoroughly discussed. In this paper, we study the basic demographics of clumps in star-forming galaxies (SFGs) at 0.5<z<3, using our proposed physical definition that UV-bright clumps are discrete star-forming regions that individually contribute more than 8% of the rest-frame UV light of their galaxies. Clumps defined this way are significantly brighter than the HII regions of nearby large spiral galaxies, either individually or blended, when physical spatial resolution and cosmological dimming are considered. Under this definition, we measure the fraction of SFGs that contain at least one off-center clump (Fclumpy) and the contributions of clumps to the rest-frame UV light and star formation rate of SFGs in the CANDELS/GOODS-S and UDS fields, where our mass-complete sample consists of 3239 galaxies with axial ratio q>0.5. The redshift evolution of Fclumpy changes with the stellar mass (M*) of the galaxies. Low-mass (log(M*/Msun)<9.8) galaxies keep an almost constant Fclumpy of about 60% from z~3.0 to z~0.5. Intermediate-mass and massive galaxies drop their Fclumpy from 55% at z~3.0 to 40% and 15%, respectively, at z~0.5. We find that (1) the trend of disk stabilization predicted by violent disk instability matches the Fclumpy trend of massive galaxies; (2) minor mergers are a viable explanation of the Fclumpy trend of intermediate-mass galaxies at z<1.5, given a realistic observability timescale; and (3) major mergers are unlikely responsible for the Fclumpy trend in all masses at z<1.5. The clump contribution to the rest-frame UV light of SFGs shows a broad peak around galaxies with log(M*/Msun)~10.5 at all redshifts, possibly linked to the molecular gas fraction of the galaxies. (Abridged)Comment: 22 pages, 15 figures. Appeared in ApJ (2015, 800, 39). A few typos correcte

    The Advanced Camera for Surveys General Catalog: Structural Parameters for Approximately Half A Million Galaxies

    Get PDF
    We present the Advanced Camera for Surveys General Catalog (ACS-GC), a photometric and morphological database using publicly available data obtained with the Advanced Camera for Surveys (ACS) instrument on the Hubble Space Telescope. The goal of the ACS-GC database is to provide a large statistical sample of galaxies with reliable structural and distance measurements to probe the evolution of galaxies over a wide range of look-back times. The ACS-GC includes approximately 470,000 astronomical sources (stars + galaxies) derived from the AEGIS, COSMOS, GEMS, and GOODS surveys. Galapagos was used to construct photometric (SEXTRACTOR) and morphological (GALFIT) catalogs. The analysis assumes a single Sersic model for each object to derive quantitative structural parameters. We include publicly available redshifts from the DEEP2, COMBO-17, TKRS, PEARS, ACES, CFHTLS, and zCOSMOS surveys to supply redshifts (spectroscopic and photometric) for a considerable fraction (similar to 74%) of the imaging sample. The ACS-GC includes color postage stamps, GALFIT residual images, and photometry, structural parameters, and redshifts combined into a single catalog.NASA/ESA GO-10134, GO-09822, GO-09425.01, GO-09583.01, GO-9500NASA NAS 5-26555NSF AST00-71048NASA LTSA NNG04GC89GESO Paranal Observatory LP175.A-0839Astronom
    corecore