494 research outputs found

    A rare leucine codon in adpA is implicated in the morphological defect of bldA mutants of Streptomyces coelicolor

    Get PDF
    Streptomycetes are mycelial bacteria that produce sporulating aerial hyphae on solid media. Bald (bld) mutants fail to form aerial mycelium under at least some conditions. bldA encodes the only tRNA species able to read the leucine codon UUA efficiently, implying the involvement of a TTA-containing gene in initiating aerial growth. One candidate for such a gene was bldH, because the bldH109 mutant of Streptomyces coelicolor resembles bldA mutants in some aspects. In the work reported here, adpAc, an S. coelicolor gene similar to the Streptomyces griseus A factor-regulated adpAg, was found to complement the bldH109 mutant partially at both single and multiple copies. The sequence of adpAc from the bldH109 mutant revealed a frameshift. A constructed in frame deletion of adpAc conferred a bald colony phenotype, and the mutant behaved like bldA mutants and bldH109 in its pattern of extracellular signal exchange. Both adpAc and adpAg contain a TTA codon. A TTA-free version of adpAc was engineered by replacing the TTA leucine codon with a cognate TTG leucine codon. The adpA(TTA→TTG) gene could partially restore aerial mycelium formation to a bldA mutant when it was followed in cis by the gene ornA, as in the natural chromosomal arrangement. This indicated that the UUA codon in adpAc mRNA is the principal target through which bldA influences morphological differentiation. It also implied that translational arrest at the UUA codon in adpAc mRNA caused a polar effect on the downstream ornA, and that the poor translation of both genes contributes extensively to the deficiency of aerial mycelium formation in bldA mutants. Unlike the situation in S. griseus, adpAc transcription does not depend on the host’s γ-butyrolactone signalling system, at least in liquid cultures. In addition, sigma factor BldN, which is the homologue of an S. griseus sigma factor AdsA that is absent from adpAg mutants of S. griseus, was present in the constructed adpAc null mutant of S. coelicolor

    An Oligopeptide Transporter of Mycobacterium tuberculosis Regulates Cytokine Release and Apoptosis of Infected Macrophages

    Get PDF
    Background: The Mycobacterium tuberculosis genome encodes two peptide transporters encoded by Rv3665c-Rv3662c and Rv1280c-Rv1283c. Both belong to the family of ABC transporters containing two nucleotide-binding subunits, two integral membrane proteins and one substrate-binding polypeptide. However, little is known about their functions in M. tuberculosis. Here we report functional characterization of the Rv1280c-Rv1283c-encoded transporter and its substrate-binding polypeptide OppA(MTB). Methodology/Principal Findings: OppA(MTB) was capable of binding the tripeptide glutathione and the nonapeptide bradykinin, indicative of a somewhat broad substrate specificity. Amino acid residues G109, N110, N230, D494 and F496, situated at the interface between domains I and III of OppA, were required for optimal peptide binding. Complementaton of an oppA knockout mutant of M. smegmatis with OppA(MTB) confirmed the role of this transporter in importing glutathione and the importance of the aforesaid amino acid residues in peptide transport. Interestingly, this transporter regulated the ability of M. tuberculosis to lower glutathione levels in infected compared to uninfected macrophages. This ability was partly offset by inactivation of oppD. Concomitantly, inactivation of oppD was associated with lowered levels of methyl glyoxal in infected macrophages and reduced apoptosis-inducing ability of the mutant. The ability to induce the production of the cytokines IL-1 beta, IL-6 and TNF-alpha was also compromised after inactivation of oppD. Conclusions: Taken together, these studies uncover the novel observations that this peptide transporter modulates the innate immune response of macrophages infected with M. tuberculosis

    Power exhaust by SOL and pedestal radiation at ASDEX Upgrade and JET

    Get PDF

    Overview of the JET ITER-like wall divertor

    Get PDF

    Multi-machine scaling of the main SOL parallel heat flux width in tokamak limiter plasmas

    Get PDF

    Modelling of the effect of ELMs on fuel retention at the bulk W divertor of JET

    Get PDF
    Effect of ELMs on fuel retention at the bulk W target of JET ITER-Like Wall was studied with multi-scale calculations. Plasma input parameters were taken from ELMy H-mode plasma experiment. The energetic intra-ELM fuel particles get implanted and create near-surface defects up to depths of few tens of nm, which act as the main fuel trapping sites during ELMs. Clustering of implantation-induced vacancies were found to take place. The incoming flux of inter-ELM plasma particles increases the different filling levels of trapped fuel in defects. The temperature increase of the W target during the pulse increases the fuel detrapping rate. The inter-ELM fuel particle flux refills the partially emptied trapping sites and fills new sites. This leads to a competing effect on the retention and release rates of the implanted particles. At high temperatures the main retention appeared in larger vacancy clusters due to increased clustering rate

    ELM divertor peak energy fluence scaling to ITER with data from JET, MAST and ASDEX upgrade

    Get PDF

    On the mechanisms governing gas penetration into a tokamak plasma during a massive gas injection

    Get PDF
    A new 1D radial fluid code, IMAGINE, is used to simulate the penetration of gas into a tokamak plasma during a massive gas injection (MGI). The main result is that the gas is in general strongly braked as it reaches the plasma, due to mechanisms related to charge exchange and (to a smaller extent) recombination. As a result, only a fraction of the gas penetrates into the plasma. Also, a shock wave is created in the gas which propagates away from the plasma, braking and compressing the incoming gas. Simulation results are quantitatively consistent, at least in terms of orders of magnitude, with experimental data for a D 2 MGI into a JET Ohmic plasma. Simulations of MGI into the background plasma surrounding a runaway electron beam show that if the background electron density is too high, the gas may not penetrate, suggesting a possible explanation for the recent results of Reux et al in JET (2015 Nucl. Fusion 55 093013)

    Assessment of erosion, deposition and fuel retention in the JET-ILW divertor from ion beam analysis data

    Get PDF
    corecore