77 research outputs found

    Strand displacement of double-stranded DNA by triplex-forming antiparallel purine-hairpins

    Get PDF
    We characterize the binding affinity and the thermodynamics of hybridization of triplex-forming antiparallel purine-hairpins composed of two antiparallel purine domains linked by a loop directed toward single-stranded and double-stranded DNA (ssDNA, dsDNA). Gel retardation assays and melting experiments reveal that a 13-mer purine-hairpin binds specifically and with a Kd of 8 × 10-8 M to polypyrimidine ssDNA to form a triple helical structure. Remarkably, we show that purine-hairpins also bind polypurine/polypyrimidine stretches included in a dsDNA of several hundred bp in length. Binding of purine-hairpins to dsDNA occurs by triplex formation with the polypyrimidine strand, causing displacement of the polypurine strand. Because triplex formation is restricted to polypurine/polypyrimidine stretches of dsDNA, we studied the triplex formation between purine-hairpins and polypyrimidine targets containing purine interruptions. We found that an 11-mer purine-hairpin with an adenine opposite to a guanine interruption in the polypyrimidine track binds to ssDNA and dsDNA, allowing expansion of the possible target sites and increase in the length of purine-hairpins. Thus, when using a 20-mer purine-hairpin targeting an interruption-containing polypyrimidine target, the binding affinity is increased compared to its 13-mer antiparallel purine-hairpin counterpart. Surprisingly, this increase is much more pronounced than that observed for a tail-clamp purine-hairpin extended up to 20 nt in the Watson-Crick domain only. Thus, triplex-forming antiparallel purine-hairpins can be a potentially useful strategy for both single-strand and double-strand nucleic acid recognition.This research was supported by grants SAF02-0363 and SAF05-0247 from the “Comisión Interministerial de Ciencia y Tecnología” and 2001SGR141 from the “Comissionat d’Universitats i Recerca (CUR)”. S.C. is the recipient of a postgraduate fellowship from the Spanish Ministry of Education. We thank Jordi Robles from University of Barcelona for his help with the use of MeltWin software.Peer reviewe

    PolyPurine Reverse Hoogsteen Hairpins Work as RNA Species for Gene Silencing

    Get PDF
    Adenovirus; Terapia contra el cáncer; Vectores viralesAdenovirus; Cancer therapy; Viral vectorsAdenovirus; Teràpia contra el càncer; Vectors viralsPolyPurine Reverse Hoogsteen Hairpins (PPRHs) are gene-silencing DNA-oligonucleotides developed in our laboratory that are formed by two antiparallel polypurine mirror repeat domains bound intramolecularly by Hoogsteen bonds. The aim of this work was to explore the feasibility of using viral vectors to deliver PPRHs as a gene therapy tool. After treatment with synthetic RNA, plasmid transfection, or viral infection targeting the survivin gene, viability was determined by the MTT assay, mRNA was determined by RT-qPCR, and protein levels were determined by Western blot. We showed that the RNA-PPRH induced a decrease in cell viability in a dose-dependent manner and an increase in apoptosis in PC-3 and HeLa cells. Both synthetic RNA-PPRH and RNA-PPRH intracellularly generated upon the transfection of a plasmid vector were able to reduce survivin mRNA and protein levels in PC-3 cells. An adenovirus type-5 vector encoding the PPRH against survivin was also able to decrease survivin mRNA and protein levels, leading to a reduction in HeLa cell viability. In this work, we demonstrated that PPRHs can also work as RNA species, either chemically synthesized, transcribed from a plasmid construct, or transcribed from viral vectors. Therefore, all these results are the proof of principle that viral vectors could be considered as a delivery system for PPRHs.This research was funded by grant RTI2018-093901-B-I00 from Plan Nacional de Investigación Científica (Spain). Group holding the Quality Mention from Generalitat de Catalunya 2017-SGR-94. EA is awarded with fellowships from Generalitat de Catalunya (FI)

    Role of Caveolin 1, E-Cadherin, Enolase 2 and PKCalpha on resistance to methotrexate in human HT29 colon cancer cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Methotrexate is one of the earliest cytotoxic drugs used in cancer therapy, and despite the isolation of multiple other folate antagonists, methotrexate maintains its significant role as a treatment for different types of cancer and other disorders. The usefulness of treatment with methotrexate is limited by the development of drug resistance, which may be acquired through different ways. To get insights into the mechanisms associated with drug resistance and sensitization we performed a functional analysis of genes deregulated in methotrexate resistant cells, either due to its co-amplification with the <it>dhfr </it>gene or as a result of a transcriptome screening using microarrays.</p> <p>Methods</p> <p>Gene expression levels were compared between triplicate samples from either HT29 sensitive cells and resistant to 10<sup>-5 </sup>M MTX by hybridization to the GeneChip<sup>® </sup>HG U133 PLUS 2.0 from Affymetrix. After normalization, a list of 3-fold differentially expressed genes with a p-value < 0.05 including multiple testing correction (Benjamini and Hochberg false discovery rate) was generated. RT-Real-time PCR was used to validate the expression levels of selected genes and copy-number was determined by qPCR. Functional validations were performed either by siRNAs or by transfection of an expression plasmid.</p> <p>Results</p> <p>Genes adjacent to the <it>dhfr locus </it>and included in the 5q14 amplicon were overexpressed in HT29 MTX-resistant cells. Treatment with siRNAs against those genes caused a slight reduction in cell viability in both HT29 sensitive and resistant cells. On the other hand, microarray analysis of HT29 and HT29 MTX resistant cells unveiled overexpression of caveolin 1, enolase 2 and PKCα genes in resistant cells without concomitant copy number gain. siRNAs against these three genes effectively reduced cell viability and caused a decreased MTX resistance capacity. Moreover, overexpression of E-cadherin, which was found underexpressed in MTX-resistant cells, also sensitized the cells toward the chemotherapeutic agent. Combined treatments targeting siRNA inhibition of caveolin 1 and overexpression of E-cadherin markedly reduced cell viability in both sensitive and MTX-resistant HT29 cells.</p> <p>Conclusion</p> <p>We provide functional evidences indicating that caveolin 1 and E-cadherin, deregulated in MTX resistant cells, may play a critical role in cell survival and may constitute potential targets for coadjuvant therapy.</p

    Short-term oleoyl-estrone treatment affects capacity to manage lipids in rat adipose tissue

    Get PDF
    Background: Short-term OE (oleoyl-estrone) treatment causes significant decreases in rat weight mainly due to adipose tissue loss. The aim of this work was to determine if OE treatment affects the expression of genes that regulate lipid metabolism in white adipose tissue. Results: Gene expression in adipose tissue from female treated rats (48 hours) was analysed by hybridization to cDNA arrays and levels of specific mRNAs were determined by real-time PCR. Treatment with OE decreased the expression of 232 genes and up-regulated 75 other genes in mesenteric white adipose tissue. The use of real-time PCR validate that, in mesenteric white adipose tissue, mRNA levels for Lipoprotein Lipase (LPL) were decreased by 52%, those of Fatty Acid Synthase (FAS) by 95%, those of Hormone Sensible Lipase (HSL) by 32%, those of Acetyl CoA Carboxylase (ACC) by 92%, those of Carnitine Palmitoyltransferase 1b (CPT1b) by 45%, and those of Fatty Acid Transport Protein 1 (FATP1) and Adipocyte Fatty Acid Binding Protein (FABP4) by 52% and 49%, respectively. Conversely, Tumour Necrosis Factor (TNF¿) values showed overexpression (198%). Conclusion: Short-term treatment with OE affects adipose tissue capacity to extract fatty acids from lipoproteins and to deal with fatty acid transport and metabolism

    Coffee Polyphenols Change the Expression of STAT5B and ATF-2 Modifying Cyclin D1 Levels in Cancer Cells

    Get PDF
    Background. Epidemiological studies suggest that coffee consumption reduces the risk of cancer, but the molecular mechanisms of its chemopreventive effects remain unknown. Objective. To identify differentially expressed genes upon incubation of HT29 colon cancer cells with instant caffeinated coffee (ICC) or caffeic acid (CA) using whole-genome microarrays. Results. ICC incubation of HT29 cells caused the overexpression of 57 genes and the underexpression of 161, while CA incubation induced the overexpression of 12 genes and the underexpression of 32. Using Venn-Diagrams, we built a list of five overexpressed genes and twelve underexpressed genes in common between the two experimental conditions. This list was used to generate a biological association network in which STAT5B and ATF-2 appeared as highly interconnected nodes. STAT5B overexpression was confirmed at the mRNA and protein levels. For ATF-2, the changes in mRNA levels were confirmed for both ICC and CA, whereas the decrease in protein levels was only observed in CA-treated cells. The levels of cyclin D1, a target gene for both STAT5B and ATF-2, were downregulated by CA in colon cancer cells and by ICC and CA in breast cancer cells. Conclusions. Coffee polyphenols are able to affect cyclin D1 expression in cancer cells through the modulation of STAT5B and ATF-2

    In Vitro and In Vivo Effects of the Combination of Polypurine Reverse Hoogsteen Hairpins against HER-2 and Trastuzumab in Breast Cancer Cells

    Full text link
    Therapeutic oligonucleotides are powerful tools for the inhibition of potential targets involved in cancer. We describe the effect of two Polypurine Reverse Hoogsteen (PPRH) hairpins directed against the ERBB2 gene, which is overexpressed in positive HER-2 breast tumors. The inhibition of their target was analyzed by cell viability and at the mRNA and protein levels. The combination of these specific PPRHs with trastuzumab was also explored in breast cancer cell lines, both in vitro and in vivo. PPRHs designed against two intronic sequences of the ERBB2 gene decreased the viability of SKBR-3 and MDA-MB-453 breast cancer cells. The decrease in cell viability was associated with a reduction in ERBB2 mRNA and protein levels. In combination with trastuzumab, PPRHs showed a synergic effect in vitro and reduced tumor growth in vivo. These results represent the preclinical proof of concept of PPRHs as a therapeutic tool for breast cance

    A Kinesin Driven Enzyme Linked Immunosorbant Assay (ELISA) for Ultra Low Protein Detection Applications

    Get PDF
    <p>Gene Ontology bar charts for three different criteria: biological process (A), cell localization (B) and molecular function (C). The list of differentially expressed genes after RSV diet in neocortex were classified by Gene Ontology (GO) and drawn using Panther (<a href="https://www.pantherdb.org/" target="_blank">www.pantherdb.org/</a>)</p

    Platelet Serotonin Aggravates Myocardial Ischemia/Reperfusion Injury via Neutrophil Degranulation

    Get PDF
    Background: Platelets store large amounts of serotonin that they release during thrombus formation or acute inflammation. This facilitates hemostasis and modulates the inflammatory response. Methods: Infarct size, heart function, and inflammatory cell composition were analyzed in mouse models of myocardial reperfusion injury with genetic and pharmacological depletion of platelet serotonin. These studies were complemented by in vitro serotonin stimulation assays of platelets and leukocytes in mice and men, and by measuring plasma serotonin levels and leukocyte activation in patients with acute coronary syndrome. Results: Platelet-derived serotonin induced neutrophil degranulation with release of myeloperoxidase and hydrogen peroxide (H2O2) and increased expression of membrane-bound leukocyte adhesion molecule CD11b, leading to enhanced inflammation in the infarct area and reduced myocardial salvage. In patients hospitalized with acute coronary syndrome, plasmatic serotonin levels correlated with CD11b expression on neutrophils and myeloperoxidase plasma levels. Long-term serotonin reuptake inhibition - reported to protect patients with depression from cardiovascular events - resulted in the depletion of platelet serotonin stores in mice. These mice displayed a reduction in neutrophil degranulation and preserved cardiac function. In line, patients with depression using serotonin reuptake inhibition, presented with suppressed levels of CD11b surface expression on neutrophils and lower myeloperoxidase levels in blood. Conclusions: Taken together, we identify serotonin as a potent therapeutic target in neutrophil-dependent thromboinflammation during myocardial reperfusion injury.Fil: Mauler, Maximilian. No especifíca;Fil: Herr, Nadine. No especifíca;Fil: Schoenichen, Claudia. No especifíca;Fil: Witsch, Thilo. No especifíca;Fil: Marchini, Timoteo Oscar. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Bioquímica y Medicina Molecular. Universidad de Buenos Aires. Facultad Medicina. Instituto de Bioquímica y Medicina Molecular; ArgentinaFil: Härdtner, Carmen. No especifíca;Fil: Koentges, Christoph. No especifíca;Fil: Kienle, Korbinian. Max Planck Institute Of Immunobiology And Epigenetics; AlemaniaFil: Ollivier, Véronique. Inserm; FranciaFil: Schell, Maximilian. No especifíca;Fil: Dorner, Ludwig. No especifíca;Fil: Wippel, Christopher. No especifíca;Fil: Stallmann, Daniela. No especifíca;Fil: Normann, Claus. No especifíca;Fil: Bugger, Heiko. No especifíca;Fil: Walther, Paul. Universitat Ulm; AlemaniaFil: Wolf, Dennis. La Jolla Institute for Allergy and Immunology; Estados UnidosFil: Ahrens, Ingo. No especifíca;Fil: Lämmermann, Tim. Max Planck Institute Of Immunobiology And Epigenetics; AlemaniaFil: Ho-Tin-Noé, Benoît. Inserm; FranciaFil: Ley, Klaus. La Jolla Institute for Allergy and Immunology; Estados UnidosFil: Bode, Christoph. No especifíca;Fil: Hilgendorf, Ingo. No especifíca;Fil: Duerschmied, Daniel. No especifíca

    Overexpression of S100A4 in human cancer cell lines resistant to methotrexate

    Get PDF
    Methotrexate is a chemotherapeutic drug that is used in therapy of a wide variety of cancers. The efficiency of treatment with this drug is compromised by the appearance of resistance. Combination treatments of MTX with other drugs that could modulate the expression of genes involved in MTX resistance would be an adequate strategy to prevent the development of this resistance. Methods: The differential expression pattern between sensitive and MTX-resistant cells was determined by whole human genome microarrays and analyzed with the GeneSpring GX software package. A global comparison of all the studied cell lines was performed in order to find out differentially expressed genes in the majority of the MTX-resistant cells. S100A4 mRNA and protein levels were determined by RT-Real-Time PCR and Western blot, respectively. Functional validations of S100A4 were performed either by transfection of an expression vector for S100A4 or a siRNA against S100A4. Transfection of an expression vector encoding for β-catenin was used to inquire for the possible transcriptional regulation of S100A4 through the Wnt pathway. Results: S100A4 is overexpressed in five out of the seven MTX-resistant cell lines studied. Ectopic overexpression of this gene in HT29 sensitive cells augmented both the intracellular and extracellular S100A4 protein levels and caused desensitization toward MTX. siRNA against S100A4 decreased the levels of this protein and caused a chemosensitization in combined treatments with MTX. β-catenin overexpression experiments support a possible involvement of the Wnt signaling pathway in S100A4 transcriptional regulation in HT29 cells. Conclusions: S100A4 is overexpressed in many MTX-resistant cells. S100A4 overexpression decreases the sensitivity of HT29 colon cancer human cells to MTX, whereas its knockdown causes chemosensitization toward MTX. Both approaches highlight a role for S100A4 in MTX resistanc
    corecore