89 research outputs found

    Effects of Medicinal Plant Extracts and Photosensitization on Aflatoxin Producing Aspergillus flavus

    Get PDF
    This study was undertaken with an aim of exploring the effectiveness of medicinal plant extracts in the control of aflatoxin production. Antifungal properties, photosensitization, and phytochemical composition of aqueous and organic extracts of fruits from Solanum aculeastrum, bark from Syzygium cordatum, and leaves from Prunus africana, Ocimum lamiifolium, Lippia kituiensis, and Spinacia oleracea were tested. Spores from four-day-old cultures of previously identified toxigenic fungi, UONV017 and UONV003, were used. Disc diffusion and broth dilution methods were used to test the antifungal activity. The spores were suspended in 2 ml of each extract separately and treated with visible light (420 nm) for varying periods. Organic extracts displayed species and concentration dependent antifungal activity. Solanum aculeastrum had the highest zones of inhibition diameters in both strains: UONV017 (mean = 18.50±0.71 mm) and UONV003 (mean = 11.92±0.94 mm) at 600 mg/ml. Aqueous extracts had no antifungal activity because all diameters were below 8 mm. Solanum aculeastrum had the lowest minimum inhibitory concentration at 25 mg/ml against A. flavus UONV017. All the plant extracts in combination with light reduced the viability of fungal conidia compared with the controls without light, without extracts, and without both extracts and light. Six bioactive compounds were analyzed in the plant extracts. Medicinal plant extracts in this study can control conidia viability and hence with further development can control toxigenic fungal spread

    Elimination of transmission of onchocerciasis (river blindness) with long-term ivermectin mass drug administration with or without vector control in sub-Saharan Africa:a systematic review and meta-analysis

    Get PDF
    Background: WHO has proposed elimination of transmission of onchocerciasis (river blindness) by 2030. More than 99% of cases of onchocerciasis are in sub-Saharan Africa. Vector control and mass drug administration of ivermectin have been the main interventions for many years, with varying success. We aimed to identify factors associated with elimination of onchocerciasis transmission in sub-Saharan Africa. Methods: For this systematic review and meta-analysis we searched for published articles reporting epidemiological or entomological assessments of onchocerciasis transmission status in sub-Saharan Africa, with or without vector control. We searched MEDLINE, PubMed, Web of Science, Embase, Cochrane Central Register of Controlled Trials, African Index Medicus, and Google Scholar databases for all articles published from database inception to Aug 19, 2023, without language restrictions. The search terms used were “onchocerciasis” AND “ivermectin” AND “mass drug administration”. The three inclusion criteria were (1) focus or foci located in Africa, (2) reporting of elimination of transmission or at least 10 years of ivermectin mass drug administration in the focus or foci, and (3) inclusion of at least one of the following assessments: microfilarial prevalence, nodule prevalence, Ov16 antibody seroprevalence, and blackfly infectivity prevalence. Epidemiological modelling studies and reviews were excluded. Four reviewers (NM, AJ, AM, and TNK) extracted data in duplicate from the full-text articles using a data extraction tool developed in Excel with columns recording the data of interest to be extracted, and a column where important comments for each study could be highlighted. We did not request any individual-level data from authors. Foci were classified as achieving elimination of transmission, being close to elimination of transmission, or with ongoing transmission. We used mixed-effects meta-regression models to identify factors associated with transmission status. This study is registered in PROSPERO, CRD42022338986. Findings: Of 1525 articles screened after the removal of duplicates, 75 provided 282 records from 238 distinct foci in 19 (70%) of the 27 onchocerciasis-endemic countries in sub-Saharan Africa. Elimination of transmission was reported in 24 (9%) records, being close to elimination of transmission in 86 (30%) records, and ongoing transmission in 172 (61%) records. I2 was 83·3% (95% CI 79·7 to 86·3). Records reporting 10 or more years of continuous mass drug administration with 80% or more therapeutic coverage of the eligible population yielded significantly higher odds of achieving elimination of transmission (log-odds 8·5 [95% CI 3·5 to 13·5]) or elimination and being close to elimination of transmission (42·4 [18·7 to 66·1]) than those with no years achieving 80% coverage or more. Reporting 15–19 years of ivermectin mass drug administration (22·7 [17·2 to 28·2]) and biannual treatment (43·3 [27·2 to 59·3]) were positively associated with elimination and being close to elimination of transmission compared with less than 15 years and no biannual mass drug administration, respectively. Having had vector control without vector elimination (−42·8 [−59·1 to −26·5]) and baseline holoendemicity (−41·97 [−60·6 to −23·2]) were associated with increased risk of ongoing transmission compared with no vector control and hypoendemicity, respectively. Blackfly disappearance due to vector control or environmental change contributed to elimination of transmission. Interpretation: Mass drug administration duration, frequency, and coverage; baseline endemicity; and vector elimination or disappearance are important determinants of elimination of onchocerciasis transmission in sub-Saharan Africa. Our findings underscore the importance of improving and sustaining high therapeutic coverage and increasing treatment frequency if countries are to achieve elimination of onchocerciasis transmission. </p

    Elimination of transmission of onchocerciasis (river blindness) with long-term ivermectin mass drug administration with or without vector control in sub-Saharan Africa:a systematic review and meta-analysis

    Get PDF
    Background: WHO has proposed elimination of transmission of onchocerciasis (river blindness) by 2030. More than 99% of cases of onchocerciasis are in sub-Saharan Africa. Vector control and mass drug administration of ivermectin have been the main interventions for many years, with varying success. We aimed to identify factors associated with elimination of onchocerciasis transmission in sub-Saharan Africa. Methods: For this systematic review and meta-analysis we searched for published articles reporting epidemiological or entomological assessments of onchocerciasis transmission status in sub-Saharan Africa, with or without vector control. We searched MEDLINE, PubMed, Web of Science, Embase, Cochrane Central Register of Controlled Trials, African Index Medicus, and Google Scholar databases for all articles published from database inception to Aug 19, 2023, without language restrictions. The search terms used were “onchocerciasis” AND “ivermectin” AND “mass drug administration”. The three inclusion criteria were (1) focus or foci located in Africa, (2) reporting of elimination of transmission or at least 10 years of ivermectin mass drug administration in the focus or foci, and (3) inclusion of at least one of the following assessments: microfilarial prevalence, nodule prevalence, Ov16 antibody seroprevalence, and blackfly infectivity prevalence. Epidemiological modelling studies and reviews were excluded. Four reviewers (NM, AJ, AM, and TNK) extracted data in duplicate from the full-text articles using a data extraction tool developed in Excel with columns recording the data of interest to be extracted, and a column where important comments for each study could be highlighted. We did not request any individual-level data from authors. Foci were classified as achieving elimination of transmission, being close to elimination of transmission, or with ongoing transmission. We used mixed-effects meta-regression models to identify factors associated with transmission status. This study is registered in PROSPERO, CRD42022338986. Findings: Of 1525 articles screened after the removal of duplicates, 75 provided 282 records from 238 distinct foci in 19 (70%) of the 27 onchocerciasis-endemic countries in sub-Saharan Africa. Elimination of transmission was reported in 24 (9%) records, being close to elimination of transmission in 86 (30%) records, and ongoing transmission in 172 (61%) records. I2 was 83·3% (95% CI 79·7 to 86·3). Records reporting 10 or more years of continuous mass drug administration with 80% or more therapeutic coverage of the eligible population yielded significantly higher odds of achieving elimination of transmission (log-odds 8·5 [95% CI 3·5 to 13·5]) or elimination and being close to elimination of transmission (42·4 [18·7 to 66·1]) than those with no years achieving 80% coverage or more. Reporting 15–19 years of ivermectin mass drug administration (22·7 [17·2 to 28·2]) and biannual treatment (43·3 [27·2 to 59·3]) were positively associated with elimination and being close to elimination of transmission compared with less than 15 years and no biannual mass drug administration, respectively. Having had vector control without vector elimination (−42·8 [−59·1 to −26·5]) and baseline holoendemicity (−41·97 [−60·6 to −23·2]) were associated with increased risk of ongoing transmission compared with no vector control and hypoendemicity, respectively. Blackfly disappearance due to vector control or environmental change contributed to elimination of transmission. Interpretation: Mass drug administration duration, frequency, and coverage; baseline endemicity; and vector elimination or disappearance are important determinants of elimination of onchocerciasis transmission in sub-Saharan Africa. Our findings underscore the importance of improving and sustaining high therapeutic coverage and increasing treatment frequency if countries are to achieve elimination of onchocerciasis transmission. </p

    Evaluation of Agronomic Characteristics, Disease Incidence, Yield Performance, and Aflatoxin Accumulation among Six Peanut Varieties (Arachis hypogea L.) Grown in Kenya

    Get PDF
    Diseases contribute to attainment of less than 50% of the local groundnut potential yield in Kenya. This study aimed to evaluate the agronomic characteristics (flowering and germination), disease incidence, yield performance (biomass, harvest index, 100-pod, 100-seed, and total pod weight), and aflatoxin accumulation in six peanut varieties. A field experiment was conducted using four newly improved peanut varieties: CG9, CG7, CG12, and ICGV-SM 90704 (Nsinjiro), and two locally used varieties: Homabay local (control) and 12991, and in a randomized complete block design with three replications. The disease identification followed the International Crop Research Institute for the Semi-Arid Tropics (ICRISAT) rating scale and further isolation of fungal contaminants was conducted by a direct plating technique using potato dextrose agar. The aflatoxin levels in the peanuts were determined after harvesting using the ultrahigh performance liquid chromatography and fluorescence detection (UHPLC-FLD) technique. ICGV-SM 90704 showed the least average disease incidence of 1.31 ± 1.75%, (P < 0.05); the lowest total aflatoxin levels (1.82 ± 1.41 ÎŒg kg−1) with a range 0.00–0.85 ÎŒg kg−1 for total aflatoxins and a range 0.00–1.24 ÎŒg kg−1 for Aflatoxin B1. The locally used varieties (12991 and the control) revealed the highest disease incidence (5.41 ± 8.31% and 7.41 ± 1.88%), respectively. ICGV-SM 90704 was the best performing among all the six varieties with an average total pod weight (9.22 ± 1.19 kg), 100-pod weight (262.93 ± 10.8 g), and biomass of (27.21 ± 5.05 kg) per row. The 12991 variety and the control showed the least total pod weight (1.60 ± 0.28 and 1.50 ± 1.11 kg, respectively) (P = 0.0001). The newly improved varieties showed lower disease rates, low levels of aflatoxins, and higher yields than the locally used varieties

    Shaping gold nanocomposites with tunable optical properties

    Get PDF
    We report the synthesis of morphological uniform composites using miniemulsions of poly(tert-butyl acrylate) or poly(styrene) containing organically capped gold nanocrystals (NCs). The optical features of such hybrid structures are dominated by plasmonic effects and depend critically on the morphology of the resulting nanocomposite. In particular, we demonstrate the ability to tune the overall optical response in the visible spectral region by varying the Au NCs arrangement within the polymer matrix, and therefore the interparticle plasmon coupling, using Au NCs resulting from the same batch of synthesis. This is a consequence of two well-known effects on the optical properties of Au particles: the variation of the surrounding dielectric refractive index and interparticle plasmonic coupling. The research reported here shows a general strategy to produce optical responsive nanocomposites via control of the morphology of submicrometric polymer particles containing metal nanocrystals and thus is an alternative to the more common strategy of size tuning metal nanoparticles used as nanofillers

    The Primarily Undergraduate Nanomaterials Cooperative: A New Model for Supporting Collaborative Research at Small Institutions on a National Scale

    Get PDF
    The Primarily Undergraduate Nanomaterials Cooperative (PUNC) is an organization for research-active faculty studying nanomaterials at Primarily Undergraduate Institutions (PUIs), where undergraduate teaching and research go hand-in-hand. In this perspective, we outline the differences in maintaining an active research group at a PUI compared to an R1 institution. We also discuss the work of PUNC, which focuses on community building, instrument sharing, and facilitating new collaborations. Currently consisting of 37 members from across the United States, PUNC has created an online community consisting of its Web site (nanocooperative.org), a weekly online summer group meeting program for faculty and students, and a Discord server for informal conversations. Additionally, in-person symposia at ACS conferences and PUNC-specific conferences are planned for the future. It is our hope that in the years to come PUNC will be seen as a model organization for community building and research support at primarily undergraduate institutions

    Metagenomic analysis of viruses associated with maize lethal necrosis in Kenya

    Get PDF
    Background: Maize lethal necrosis is caused by a synergistic co-infection of Maize chlorotic mottle virus (MCMV) and a specific member of the Potyviridae, such as Sugarcane mosaic virus (SCMV), Wheat streak mosaic virus (WSMV) or Johnson grass mosaic virus (JGMV). Typical maize lethal necrosis symptoms include severe yellowing and leaf drying from the edges. In Kenya, we detected plants showing typical and atypical symptoms. Both groups of plants often tested negative for SCMV by ELISA. Methods: We used next-generation sequencing to identify viruses associated to maize lethal necrosis in Kenya through a metagenomics analysis. Symptomatic and asymptomatic leaf samples were collected from maize and sorghum representing sixteen counties. Results: Complete and partial genomes were assembled for MCMV, SCMV, Maize streak virus (MSV) and Maize yellow dwarf virus-RMV (MYDV-RMV). These four viruses (MCMV, SCMV, MSV and MYDV-RMV) were found together in 30 of 68 samples. A geographic analysis showed that these viruses are widely distributed in Kenya. Phylogenetic analyses of nucleotide sequences showed that MCMV, MYDV-RMV and MSV are similar to isolates from East Africa and other parts of the world. Single nucleotide polymorphism, nucleotide and polyprotein sequence alignments identified three genetically distinct groups of SCMV in Kenya. Variation mapped to sequences at the border of NIb and the coat protein. Partial genome sequences were obtained for other four potyviruses and one polerovirus. Conclusion: Our results uncover the complexity of the maize lethal necrosis epidemic in Kenya. MCMV, SCMV, MSV and MYDV-RMV are widely distributed and infect both maize and sorghum. SCMV population in Kenya is diverse and consists of numerous strains that are genetically different to isolates from other parts of the world. Several potyviruses, and possibly poleroviruses, are also involved

    Understanding the potential impact of different drug properties on SARS-CoV-2 transmission and disease burden : a modelling analysis

    Get PDF
    Q1Q1Background The unprecedented public health impact of the COVID-19 pandemic has motivated a rapid search for potential therapeutics, with some key successes. However, the potential impact of different treatments, and consequently research and procurement priorities, have not been clear. Methods and Findings develop a mathematical model of SARS-CoV-2 transmission, COVID-19 disease and clinical care to explore the potential public-health impact of a range of different potential therapeutics, under a range of different scenarios varying: i) healthcare capacity, ii) epidemic trajectories; and iii) drug efficacy in the absence of supportive care. In each case, the outcome of interest was the number of COVID-19 deaths averted in scenarios with the therapeutic compared to scenarios without. We find the impact of drugs like dexamethasone (which are delivered to the most critically-ill in hospital and whose therapeutic benefit is expected to depend on the availability of supportive care such as oxygen and mechanical ventilation) is likely to be limited in settings where healthcare capacity is lowest or where uncontrolled epidemics result in hospitals being overwhelmed. As such, it may avert 22% of deaths in highincome countries but only 8% in low-income countries (assuming R=1.35). Therapeutics for different patient populations (those not in hospital, early in the course of infection) and types of benefit (reducing disease severity or infectiousness, preventing hospitalisation) could have much greater benefits, particularly in resource-poor settings facing large epidemics. Conclusions There is a global asymmetry in who is likely to benefit from advances in the treatment of COVID-19 to date, which have been focussed on hospitalised-patients and predicated on an assumption of adequate access to supportive care. Therapeutics that can feasibly be delivered to those earlier in the course of infection that reduce the need for healthcare or reduce infectiousness could have significant impact, and research into their efficacy and means of delivery should be a priorityRevista Internacional - Indexad
    • 

    corecore