17 research outputs found

    Resveratrol Decreases TXNIP mRNA and Protein Nuclear Expressions With an Arterial Function Improvement in Old Mice

    Get PDF
    Aging leads to a high prevalence of glucose intolerance and cardiovascular diseases, with oxidative stress playing a potential role. Resveratrol has shown promising effects on glucose tolerance and tends to improve endothelial function in elderly patients. Thioredoxin-interacting protein (TXNIP) was recently proposed as a potential link connecting glucose metabolism to oxidative stress. Here, we investigated the resveratrol-induced improvement of arterial aging phenotype in old mice and the expression of aortic TXNIP. Using an in vivo model of old mice with or without 3-month resveratrol treatment, we investigated the effects of resveratrol on age-related impairments from a cardiovascular Doppler analysis, to a molecular level, by studying inflammation and oxidative stress factors. We found a dual effect of resveratrol, with a decrease of age-related glucose intolerance and oxidative stress imbalance leading to reduced matrix remodeling that forestalls arterial aging phenotype in terms of intima-media thickness and arterial distensibility. These results provide the first evidence that aortic TXNIP mRNA and protein nuclear expressions are increased in the arterial aging and decreased by resveratrol treatment. In conclusion, we demonstrated that resveratrol helped to restore several aging impaired processes in old mice, with a decrease of aortic TXNIP mRNA and protein nuclear expression

    High-protein-low-carbohydrate diet: deleterious metabolic and cardiovascular effects depend on age

    Get PDF
    High-protein-low-carbohydrate (HP-LC) diets have become widespread. Yet their deleterious consequences, especially on glucose metabolism and arteries, have already been underlined. Our previous study (2) has already shown glucose intolerance with major arterial dysfunction in very old mice subjected to an HP-LC diet. The hypothesis of this work was that this diet had an age-dependent deleterious metabolic and cardiovascular outcome. Two groups of mice, young and adult (3 and 6 mo old), were subjected for 12 wk to a standard or to an HP-LC diet. Glucose and lipid metabolism was studied. The cardiovascular system was explored from the functional stage with Doppler-echography to the molecular stage (arterial reactivity, mRNA, immunohistochemistry). Young mice did not exhibit any significant metabolic modification, whereas adult mice presented marked glucose intolerance associated with an increase in resistin and triglyceride levels. These metabolic disturbances were responsible for cardiovascular damages only in adult mice, with decreased aortic distensibility and left ventricle dysfunction. These seemed to be the consequence of arterial dysfunctions. Mesenteric arteries were the worst affected with a major oxidative stress, whereas aorta function seemed to be maintained with an appreciable role of cyclooxygenase-2 to preserve endothelial function. This study highlights for the first time the age-dependent deleterious effects of an HP-LC diet on metabolism, with glucose intolerance and lipid disorders and vascular (especially microvessels) and cardiac functions. This work shows that HP-LC lead to equivalent cardiovascular alterations, as observed in very old age, and underlines the danger of such diet

    Resveratrol Improved Flow-Mediated Outward Arterial Remodeling in Ovariectomized Rats with Hypertrophic Effect at High Dose

    Get PDF
    OBJECTIVES: Chronic increases in blood flow in resistance arteries induce outward remodeling associated with increased wall thickness and endothelium-mediated dilatation. This remodeling is essential for collateral arteries growth following occlusion of a large artery. As estrogens have a major role in this remodeling, we hypothesized that resveratrol, described as possessing phytoestrogen properties, could improve remodeling in ovariectomized rats. METHODS: Blood flow was increased in vivo in mesenteric arteries after ligation of adjacent arteries in 3-month old ovariectomized rats treated with resveratrol (5 or 37.5 mg/kg per day: RESV5 or RESV37.5) or vehicle. After 2 weeks arterial structure and function were measured in vitro in high flow (HF) and normal flow (NF) arteries isolated from each rat. RESULTS: Arterial diameter was greater in HF than in NF arteries in ovariectomized rats treated with RESV5 or RESV37.5, not in vehicle-treated rats. In mice lacking estrogen receptor alpha diameter was equivalent in HF and NF arteries whereas in mice treated with RESV5 diameter was greater in HF than in NF vessels. A compensatory increase in wall thickness and a greater phenylephrine-mediated contraction were observed in HF arteries. This was more pronounced in HF arteries from RESV37.5-treated rats. ERK1/2 phosphorylation, involved in hypertrophy and contraction, were higher in RESV37.5-treated rats than in RESV5- and vehicle-treated rats. Endothelium-dependent relaxation was greater in HF than in NF arteries in RESV5-treated rats only. In HF arteries from RESV37.5-treated rats relaxation was increased by superoxide reduction and markers of oxidative stress (p67phox, GP91phox) were higher than in the 2 other groups. CONCLUSION: Resveratrol improved flow-mediated outward remodeling in ovariectomized rats thus providing a potential therapeutic tool in menopause-associated ischemic disorders. This effect seems independent of the estrogen receptor alpha. Nevertheless, caution should be taken with high doses inducing excessive contractility and hypertrophy in association with oxidative stress in HF arteries

    Resveratrol Directly Binds to Mitochondrial Complex I and Increases Oxidative Stress in Brain Mitochondria of Aged Mice

    Get PDF
    Resveratrol is often described as a promising therapeutic molecule for numerous diseases, especially in metabolic and neurodegenerative disorders. While the mechanism of action is still debated, an increasing literature reports that resveratrol regulates the mitochondrial respiratory chain function. In a recent study we have identified mitochondrial complex I as a direct target of this molecule. Nevertheless, the mechanisms and consequences of such an interaction still require further investigation. In this study, we identified in silico by docking study a binding site for resveratrol at the nucleotide pocket of complex I. In vitro, using solubilized complex I, we demonstrated a competition between NAD+ and resveratrol. At low doses (<5μM), resveratrol stimulated complex I activity, whereas at high dose (50 μM) it rather decreased it. In vivo, in brain mitochondria from resveratrol treated young mice, we showed that complex I activity was increased, whereas the respiration rate was not improved. Moreover, in old mice with low antioxidant defenses, we demonstrated that complex I activation by resveratrol led to oxidative stress. These results bring new insights into the mechanism of action of resveratrol on mitochondria and highlight the importance of the balance between pro- and antioxidant effects of resveratrol depending on its dose and age. These parameters should be taken into account when clinical trials using resveratrol or analogues have to be designed

    Groupe de travail SFBC « Marqueurs biochimiques de COVID-19 »

    No full text
    International audienceThe SARS-CoV-2 virus is responsible for an epidemic disease called COVID-19, which was initially evidenced in Wuhan, China, and spread very rapidly in China and around the world. In France, the first isolated case seems now to be reported in December 2019, stage 3 of the COVID-19 epidemic was triggered on March 14(th), the start of the planned containment exit from May 11(th). Healthcare services have faced a large influx of patients who may be beyond their capacity to receive and care, particularly in the Large-East and Ile-de-France regions. Some patients show an evolution of the disease never observed before with other coronaviruses and develop in a few days a very important inflammatory reaction, which can lead to death of patients. A working group of the French Society of Clinical Biology (SFBC) was set up with the objective of providing updated information on the current status of the biological prescriptions (focusing on biochemistry ones) and their evolution during the epidemic, and of analyzing the biological parameters associated with comorbidities and patient evolution in order to link biological results with medical events. The expanded working group covers all sectors of medical biology in France and extends to the French-speaking world: hospital sectors (CHU and CH, Army Training Hospitals) and the private sector opening a field of view on the biological situation in establishments for dependent elderly, social establishments and clinical medical institutions. The purpose of this article is the presentation of this working group and its immediate and future actions.Le virus SARS-CoV-2 est responsable d’une maladie épidémique dénommée COVID-19 initialement mise en évidence à Wuhan (Chine) et qui s’est propagée très rapidement en Chine puis dans le monde entier. En France, le premier cas isolé semble être signalé dès la fin du mois de décembre2019, le stade 3 de l’épidémie a été déclenché le 14 mars 2020 et la sortie progressive du confinement est prévue à partir du 11 mai 2020. Les services de soins ont fait face à un afflux massif de patients pouvant déborder leurs capacités d’accueil et de prise en charge, notamment dans les régions Grand-Est et Ile-de-France. Certains patients présentent une évolution de la maladie encore jamais observée avec les coronavirus et développent en quelques jours une réaction inflammatoire très importante, pouvant mener au décès. Un groupe de travail de la Société française de biologie clinique (SFBC) s’est constitué, ayant pour objectif de faire le point sur les prescriptions biologiques et leur évolution au cours de l’épidémie, d’analyser les paramètres biologiques, avec un focus biochimique, associés aux comorbidités et à l’évolution du patient, dans le but de relier les résultats biologiques avec des évènements du parcours de soins du patient. Ce groupe de travail recouvre tous les secteurs publics (CHU, CH, Hôpitaux d’instruction des armées) et privés de la biologie médicale en France métropolitaine et ultra-marine ; il s’étend également à la francophonie. Il permet une vision large sur la situation biologique en milieu hospitalier, établissements d’hébergements de personnes âgées dépendantes (Ehpad), établissements médicaux sociaux (EMS) et en cliniques. Le but de cet article est la présentation de ce groupe de travail et ses actions immédiates et à venir

    Impact of 3-week citrulline supplementation on postprandial protein metabolism in malnourished older patients: The Ciproage randomized controlled trial

    No full text
    BACKGROUND: Citrulline (CIT), is not extracted by the splanchnic area, can stimulate muscle protein synthesis and could potentially find clinical applications in conditions involving low amino acid (AA) intake, such as in malnourished older subjects. OBJECTIVE: Our purpose was to research the effects of CIT supplementation on protein metabolism in particular on non-oxidative leucine disposal (NOLD, primary endpoint), and splanchnic extraction of amino acids in malnourished older patients. DESIGN: This prospective randomized multicenter study determined whole-body and liver protein synthesis, splanchnic protein metabolism and appendicular skeletal muscle mass (ASMM) in 24 malnourished older patients [80-92 years; 18 women and 6 men] in inpatient rehabilitation units. All received an oral dose of 10 g of CIT or an equimolar mixture of six non-essential amino acids (NEAAs), as isonitrogenous placebo, for 3 weeks. RESULTS: NOLD and albumin fractional synthesis rates were not different between the NEAA and CIT groups. Splanchnic extraction of dietary amino acid tended to decrease (p = 0.09) in the CIT group (45.2%) compared with the NEAA group (60.3%). Total differences in AA and NEAA area under the curves between fed-state and postabsorptive-state were significantly higher in the CIT than in the NEAA group. There were no significant differences for body mass index, fat mass (FM), lean mass (LM) or ASMM in the whole population except for a tendential decrease in FM for the citrulline group (p = 0.089). Compared with Day 1, lean mass and ASMM significantly increased (respectively p = 0.016 and p = 0.018) at Day 20 in CIT-treated women (mean respective increase of 1.7 kg and 1.1 kg), and fat mass significantly decreased (p = 0.001) at Day 20 in CIT-group women (mean decrease of 1.3 kg). CONCLUSIONS: Our results demonstrate that CIT supplementation has no effect on whole-body protein synthesis or liver protein synthesis in malnourished older subjects. However, CIT supplementation was associated with a higher systemic AA availability. In the subgroup of women, CIT supplementation increased LM and ASMM, and decreased FM
    corecore