36 research outputs found

    Region Specific and Worldwide Distribution of Collagen-Binding M Proteins with PARF Motifs among Human Pathogenic Streptococcal Isolates

    Get PDF
    Some of the variety of Streptococcus pyogenes and Streptococcus dysgalactiae ssp. equisimilis (SDSE) M proteins act as collagen-binding adhesins that facilitate acute infection. Moreover, their potential to trigger collagen autoimmunity has been implicated in the pathogenesis of acute rheumatic fever and attributed to a collagen-binding motif called PARF (peptide associated with rheumatic fever). For the first time we determine the rate of clinical isolates with collagen-binding M proteins that use a PARF motif (A/T/E)XYLXX(L/F)N in a defined geographic region, Vellore in South India. In this region both, incidence of streptococcal infections and prevalence of acute rheumatic fever are high. M proteins with PARF motif conferred collagen-binding activity to 3.9% of 153 S. pyogenes and 10.6% of 255 SDSE clinical isolates from Vellore. The PARF motif occurred in three S. pyogenes and 22 SDSE M protein types. In one of the S. pyogenes and five of the SDSE M proteins that contained the motif, collagen-binding was impaired, due to influences of other parts of the M protein molecule. The accumulated data on the collagen binding activity of certain M protein types allowed a reanalysis of published worldwide emm-typing data with the aim to estimate the rates of isolates that bind collagen via PARF. The results indicate that M proteins, which bind collagen via a PARF motif, are epidemiologically relevant in human infections, not only in Vellore. It is imperative to include the most relevant collagen-binding M types in vaccines. But when designing M protein based vaccines it should be considered that collagen binding motifs within the vaccine antigen remain potential risk factors

    Crucial Role of the CB3-Region of Collagen IV in PARF-Induced Acute Rheumatic Fever

    Get PDF
    Acute rheumatic fever (ARF) and rheumatic heart disease are serious autoimmune sequelae to infections with Streptococcus pyogenes. Streptococcal M-proteins have been implicated in ARF pathogenesis. Their interaction with collagen type IV (CIV) is a triggering step that induces generation of collagen-specific auto-antibodies. Electron microscopy of the protein complex between M-protein type 3 (M3-protein) and CIV identified two prominent binding sites of which one is situated in the CB3-region of CIV. In a radioactive binding assay, M3-protein expressing S. pyogenes and S. gordonii bound the CB3-fragment. Detailed analysis of the interactions by surface plasmon resonance measurements and site directed mutagenesis revealed high affinity interactions with dissociation constants in the nanomolar range that depend on the recently described collagen binding motif of streptococcal M-proteins. Because of its role in the induction of disease-related collagen autoimmunity the motif is referred to as ā€œpeptide associated with rheumatic feverā€ (PARF). Both, sera of mice immunized with M3-protein as well as sera from patients with ARF contained anti-CB3 auto-antibodies, indicating their contribution to ARF pathogenesis. The identification of the CB3-region as a binding partner for PARF directs the further approaches to understand the unusual autoimmune pathogenesis of PARF-dependent ARF and forms a molecular basis for a diagnostic test that detects rheumatogenic streptococci

    Atlas of group A streptococcal vaccine candidates compiled using large-scale comparative genomics.

    Get PDF
    Group A Streptococcus (GAS; Streptococcus pyogenes) is a bacterial pathogen for which a commercial vaccine for humans is not available. Employing the advantages of high-throughput DNA sequencing technology to vaccine design, we have analyzed 2,083 globally sampled GAS genomes. The global GAS population structure reveals extensive genomic heterogeneity driven by homologous recombination and overlaid with high levels of accessory gene plasticity. We identified the existence of more than 290 clinically associated genomic phylogroups across 22 countries, highlighting challenges in designing vaccines of global utility. To determine vaccine candidate coverage, we investigated all of the previously described GAS candidate antigens for gene carriage and gene sequence heterogeneity. Only 15 of 28 vaccine antigen candidates were found to have both low naturally occurring sequence variation and high (>99%) coverage across this diverse GAS population. This technological platform for vaccine coverage determination is equally applicable to prospective GAS vaccine antigens identified in future studies

    Invasion mechanisms of Gram-positive pathogenic cocci.

    Get PDF
    Gram-positive cocci are important human pathogens. Streptococci and staphylococci in particular are a major threat to human health, since they cause a variety of serious invasive infections. Their invasion into normally sterile sites of the host depends on elaborated bacterial mechanisms that involve adhesion to the host tissue, its degradation, internalisation by host cells, and passage through epithelia and endothelia. Interactions of bacterial surface proteins with proteins of the host's extracellular matrix as well as with cell surface receptors are crucial factors in these processes, and some of the key mechanisms are similar in many pathogenic Gram-positive cocci. Therapies that interfere with these mechanisms may become efficient alternatives to today's antibiotic treatments

    Draft Genome Sequence of Streptococcus dysgalactiaeĀ subsp.Ā equisimilis Strain C161L1 Isolated in Vellore, India.

    Get PDF
    Streptococcus dysgalactiae subsp. equisimilis belongs to the Ī²-hemolytic group C and G pyogenic group of streptococci. Here, we report the draft genome of the S. dysgalactiae subsp. equisimilis strain C161L1 from Vellore, a region in southern India with a high incidence rate of S. dysgalactiae subsp. equisimilis infection. This genome is 2.1Ā Mb long, with a 39.82% G+C content, and encodes 2,022 genes

    Detection of Streptococcus pyogenes virulence genes in Streptococcus dysgalactiae subsp. equisimilis from Vellore, India.

    Get PDF
    Streptococcus dysgalactiae subsp. equisimilis (SDSE), belonging to the group C and G streptococci, are human pathogens reported to cause clinical manifestations similar to infections caused by Streptococcus pyogenes. To scrutinize the distribution of gene coding for S. pyogenes virulence factors in SDSE, 255 isolates were collected from humans infected with SDSE in Vellore, a region in southern India, with high incidence of SDSE infections. Initial evaluation indicated SDSE isolates comprising of 82.35% group G and 17.64% group C. A multiplex PCR system was used to detect 21 gene encoding virulence-associated factors of S. pyogenes, like superantigens, DNases, proteinases, and other immune modulatory toxins. As validated by DNA sequencing of the PCR products, sequences homologous to speC, speG, speH, speI, speL, ssa and smeZ of the family of superantigen coding genes and for DNases like sdaD and sdc were detected in the SDSE collection. Furthermore, there was high abundance (48.12% in group G and 86.6% in group C SDSE) of scpA, the gene coding for C5a peptidase in these isolates. Higher abundance of S. pyogenes virulence factor genes was observed in SDSE of Lancefield group C as compared to group G, even though the incidence rates in former were lower. This study not only substantiates detection of S. pyogenes virulence factor genes in whole genome sequenced SDSE but also makes significant contribution towards the understanding of SDSE and its increasing virulence potential

    Factors That Cause Trimethoprim Resistance in Streptococcus pyogenes

    Get PDF
    The use of trimethoprim in treatment of Streptococcus pyogenes infections has long been discouraged because it has been widely believed that this pathogen is resistant to this antibiotic. To gain more insight into the extent and molecular basis of trimethoprim resistance in S. pyogenes, we tested isolates from India and Germany and sought the factors that conferred the resistance. Resistant isolates were identified in tests for trimethoprim or trimethoprim-sulfamethoxazole (SXT) susceptibility. Resistant isolates were screened for the known horizontally transferable trimethoprim-insensitive dihydrofolate reductase (dfr) genes dfrG, dfrF, dfrA, dfrD, and dfrK. The nucleotide sequence of the intrinsic dfr gene was determined for resistant isolates lacking the horizontally transferable genes. Based on tentative criteria, 69 out of 268 isolates (25.7%) from India were resistant to trimethoprim. Occurring in 42 of the 69 resistant isolates (60.9%), dfrF appeared more frequently than dfrG (23 isolates; 33.3%) in India. The dfrF gene was also present in a collection of SXT-resistant isolates from Germany, in which it was the only detected trimethoprim resistance factor. The dfrF gene caused resistance in 4 out of 5 trimethoprim-resistant isolates from the German collection. An amino acid substitution in the intrinsic dihydrofolate reductase known from trimethoprim-resistant Streptococcus pneumoniae conferred resistance to S. pyogenes isolates of emm type 102.2, which lacked other aforementioned dfr genes. Trimethoprim may be more useful in treatment of S. pyogenes infections than previously thought. However, the factors described herein may lead to the rapid development and spread of resistance of S. pyogenes to this antibiotic agent
    corecore