3,837 research outputs found

    The Photon Structure Function at Small-x

    Get PDF
    It is shown that recent small-x measurements of the photon structure function F_2^{\gamma}(x,Q^2) by the LEP-OPAL collaboration are consistent with parameter-free QCD predictions at all presently accessible values of Q^2.Comment: 7 pages, LaTeX, 2 figure

    Spectroscopy of 194^{194}Po

    Get PDF
    Prompt, in-beam γ\gamma rays following the reaction 170^{170}Yb + 142 MeV 28^{28}Si were measured at the ATLAS facility using 10 Compton-suppressed Ge detectors and the Fragment Mass Analyzer. Transitions in 194^{194}Po were identified and placed using γ\gamma-ray singles and coincidence data gated on the mass of the evaporation residues. A level spectrum up to J\approx10\hbar was established. The structure of 194^{194}Po is more collective than that observed in the heavier polonium isotopes and indicates that the structure has started to evolve towards the more collective nature expected for deformed nuclei.Comment: 8 pages, revtex 3.0, 4 figs. available upon reques

    Has the QCD RG-Improved Parton Content of Virtual Photons been Observed?

    Get PDF
    It is demonstrated that present e+ee^+e^- and DIS ep data on the structure of the virtual photon can be understood entirely in terms of the standard `naive' quark--parton model box approach. Thus the QCD renormalization group (RG) improved parton distributions of virtual photons, in particular their gluonic component, have not yet been observed. The appropriate kinematical regions for their future observation are pointed out as well as suitable measurements which may demonstrate their relevance.Comment: 24 pages, LaTeX, 5 figure

    The QCD Pomeron in Ultraperipheral Heavy Ion Collisions: IV. Photonuclear Production of Vector Mesons

    Get PDF
    The photonuclear production of vector mesons in ultraperipheral heavy ion collisions is investigated within the QCD color dipole picture, with particular emphasis on the saturation model. The integrated cross section and the rapidity distribution for the A + A --> V + A + A (V = rho, omega, phi, J/Psi) process are computed and theoretical estimates for scattering on both light and heavy nuclei are given for energies of RHIC and LHC. A comparison with the recent STAR data on coherent production of rho mesons is also presented. Furthermore, we calculate the photoproduction of vector mesons in proton-proton collisions at RHIC, Tevatron and LHC energies.Comment: 19 pages, 6 figures and 2 tables. Version to be published in Eur. Phys. J.

    The QCD Pomeron in ultraperipheral heavy ion collisions: III. Photonuclear production of heavy quarks

    Get PDF
    We calculate the photonuclear production of heavy quarks in ultraperipheral heavy ion collisions. The integrated cross section and the rapidity distribution are computed employing sound high energy QCD formalisms as the collinear and semihard approaches as well as the saturation model. In particular, the color glass condensate (CGC) formalism is also considered using a simple phenomenological parameterization for the color field correlator in the medium, which allow us to obtain more reliable estimates for charm and bottom production at LHC energies.Comment: 15 pages, 2 figures. Extended version to be published in Eur. Phys. J.

    Parton distributions in the virtual photon target up to NNLO in QCD

    Full text link
    Parton distributions in the virtual photon target are investigated in perturbative QCD up to the next-to-next-to-leading order (NNLO). In the case Λ2P2Q2\Lambda^2 \ll P^2 \ll Q^2, where Q2-Q^2 (P2-P^2) is the mass squared of the probe (target) photon, parton distributions can be predicted completely up to the NNLO, but they are factorisation-scheme-dependent. We analyse parton distributions in two different factorisation schemes, namely MSˉ\bar{\rm MS} and DISγ{\rm DIS}_{\gamma} schemes, and discuss their scheme dependence. We show that the factorisation-scheme dependence is characterised by the large-xx behaviours of quark distributions. Gluon distribution is predicted to be very small in absolute value except in the small-xx region.Comment: 28 pages, 5 figures, version to appear in Eur. Phys. J.

    Virtual photon structure functions and positivity constraints

    Full text link
    We study the three positivity constraints among the eight virtual photon structure functions, derived from the Cauchy-Schwarz inequality and which are hence model-independent. The photon structure functions obtained from the simple parton model show quite different behaviors in a massive quark or a massless quark case, but they satisfy, in both cases, the three positivity constraints. We then discuss an inequality which holds among the unpolarized and polarized photon structure functions F1γF_1^\gamma, g1γg_1^\gamma and WTTτW_{TT}^\tau, in the kinematic region Λ2P2Q2\Lambda^2\ll P^2 \ll Q^2, where Q2(P2)-Q^2 (-P^2) is the mass squared of the probe (target) photon, and we examine whether this inequality is satisfied by the perturbative QCD results.Comment: 24 pages, 13 eps figure

    Relative spins and excitation energies of superdeformed bands in 190Hg: Further evidence for octupole vibration

    Get PDF
    An experiment using the Eurogam Phase II gamma-ray spectrometer confirms the existence of an excited superdeformed (SD) band in 190Hg and its very unusual decay into the lowest SD band over 3-4 transitions. The energies and dipole character of the transitions linking the two SD bands have been firmly established. Comparisons with RPA calculations indicate that the excited SD band can be interpreted as an octupole-vibrational structure.Comment: 12 pages, latex, 4 figures available via WWW at http://www.phy.anl.gov/bgo/bc/hg190_nucl_ex.htm

    Next-to-next-to-leading order QCD corrections to the photon's parton structure

    Full text link
    The next-to-next-to-leading order (NNLO) corrections in massless perturbative QCD are derived for the parton distributions of the photon and the deep inelastic structure functions F_1^gamma and F_2^gamma. We present the full photonic coefficient functions at order alpha alpha_s and calculate the first six even-integer moments of the corresponding O(alpha alpha_s^2) photon-quark and photon-gluon splitting functions together with the moments of the alpha alpha_s^2 coefficient functions which enter only beyond NNLO. These results are employed to construct parametrizations of the splitting functions which prove to be sufficiently accurate at least for momentum fractions x >= 0.05. We also present explicit expressions for the transformation from the MS_bar to the DIS_gamma factorization scheme and write down the solution of the evolution equations. The numerical impact of the NNLO corrections is discussed in both schemes.Comment: 39 pages, LaTeX, 9 eps-figures. A few minor typos and a misprint in Eq. (5.9) correcte
    corecore