10 research outputs found

    Barcoding cells using cell-surface programmable DNA-binding domains

    Get PDF
    We report an approach to barcode cells through cell-surface expression of programmable zinc-finger DNA-binding domains (surface zinc fingers, sZFs). We show that sZFs enable sequence-specific labeling of living cells by dsDNA, and we develop a sequential labeling approach to image more than three cell types in mixed populations using three fluorophores. We demonstrate the versatility of sZFs through applications in which they serve as surrogate reporters, function as selective cell capture reagents and facilitate targeted cellular delivery of viruses

    A nucleic acid-based bacterial message export system for cell-to-cell communication

    No full text
    Thesis: S.M., Massachusetts Institute of Technology, School of Architecture and Planning, Program in Media Arts and Sciences, 2016.Cataloged from PDF version of thesis.Includes bibliographical references (pages 36-38).Communication within natural systems of eukaryotes and prokaryotes typically entails message transmission between and among cells via small-molecule messengers being funneled from the sender to the receiver cell. Nucleic acids are rarely used as extracellular messengers due to their labile nature and proclivity for enzymatic digestion. Eliminating these obstacles will allow for a larger array of messages to be sent with minimal cellular machinery. Exploiting the bacterial twin-arginine translocation (TAT) pathway and a nucleic-acid binding protein sourced from bacteriophage MS2, we have engineered a message-sending system in Escherichia coli capable of specifically exporting a "pre-written" circularized RNA message to the extracellular environment. This RNA message maintains its integrity over the course of at least four hours in extracellular growth medium, and this system serves as the first demonstration of versatile, stable messaging with nucleic acids, specifically with RNA, in the extracellular environment.by Lisa Nip.S.M

    Comparing need between health occupation and health education schools: which students benefit most from the school health education program.

    Get PDF
    Comparing need between Health Occupation and Health Education Schools: Which students benefit most from the School Health Education Program? First-year medical students taught general health topics at public high schools. Pre-test and post-tests were given for each presentation. Health Education students had lower pre-test scores but showed greater improvement. With greater need and fewer resources, Health Education students benefit most

    A Cas9 with PAM recognition for adenine dinucleotides

    Get PDF
    CRISPR-associated (Cas) DNA-endonucleases are remarkably effective tools for genome engineering, but have limited target ranges due to their protospacer adjacent motif (PAM) requirements. We demonstrate a critical expansion of the targetable sequence space for a type II-A CRISPR-associated enzyme through identification of the natural 5′-NAAN-3′ PAM preference of Streptococcus macacae Cas9 (SmacCas9). To achieve efficient editing activity, we graft the PAM-interacting domain of SmacCas9 to its well-established ortholog from Streptococcus pyogenes (SpyCas9), and further engineer an increased efficiency variant (iSpyMac) for robust genome editing activity. We establish that our hybrids can target all adenine dinucleotide PAM sequences and possess robust and accurate editing capabilities in human cells

    Comprehensive molecular characterization of gastric adenocarcinoma

    Get PDF
    Gastric cancer is a leading cause of cancer deaths, but analysis of molecular and clinical characteristics has been complicated by histological and aetiological heterogeneity. Here we describe a comprehensive molecular evaluation of 295 primary gastric adenocarcinomas as part of The Cancer Genome Atlas (TCGA) project. We propose a molecular classification dividing gastric cancer into four subtypes: tumours positive for Epstein-Barr virus, which display recurrent PIK3CA mutations, extreme DNA hypermethylation, and amplification of JAK2, CD274 (also known as PD-L1) and PDCD1LG2 (also known as PD-L2); microsatellite unstable tumours, which show elevated mutation rates, including mutations of genes encoding targetable oncogenic signalling proteins; genomically stable tumours, which are enriched for the diffuse histological variant and mutations of RHOA or fusions involving RHO-family GTPase-activating proteins; and tumours with chromosomal instability, which show marked aneuploidy and focal amplification of receptor tyrosine kinases. Identification of these subtypes provides a roalmap for patient stratification and trials of targeted therapiesclose19
    corecore