22,328 research outputs found

    Rotating binary Bose-Einstein condensates and vortex clusters in quantum droplets

    Full text link
    Quantum droplets may form out of a gaseous Bose-Einstein condensate, stabilized by quantum fluctuations beyond mean field. We show that multiple singly-quantized vortices may form in these droplets at moderate angular momenta in two dimensions. Droplets carrying these precursors of an Abrikosov lattice remain self-bound for certain timescales after switching off an initial harmonic confinement. Furthermore, we examine how these vortex-carrying droplets can be formed in a more pertubation-resistant setting, by starting from a rotating binary Bose-Einstein condensate and inducing a metastable persistent current via a non-monotonic trapping potential.Comment: 5 page, 4 figure

    Spinorial cohomology and maximally supersymmetric theories

    Full text link
    Fields in supersymmetric gauge theories may be seen as elements in a spinorial cohomology. We elaborate on this subject, specialising to maximally supersymmetric theories, where the superspace Bianchi identities, after suitable conventional constraints are imposed, put the theories on shell. In these cases, the spinorial cohomologies describe in a unified manner gauge transformations, fields and possible deformations of the models, e.g. string-related corrections in an alpha' expansion. Explicit cohomologies are calculated for super-Yang-Mills theory in D=10, for the N=(2,0) tensor multiplet in D=6 and for supergravity in D=11, in the latter case from the point of view of both the super-vielbein and the super-3-form potential. The techniques may shed light on some questions concerning the alpha'-corrected effective theories, and result in better understanding of the role of the 3-form in D=11 supergravity.Comment: 23 pp, plain tex. v2: Minor changes, references adde

    Towards a practical approach for self-consistent large amplitude collective motion

    Full text link
    We investigate the use of an operatorial basis in a self-consistent theory of large amplitude collective motion. For the example of the pairing-plus-quadrupole model, which has been studied previously at equilibrium, we show that a small set of carefully chosen state-dependent basis operators is sufficient to approximate the exact solution of the problem accuratly. This approximation is used to study the interplay of quadrupole and pairing degrees of freedom along the collective path for realistic examples of nuclei. We show how this leads to a viable calculational scheme for studying nuclear structure, and discuss the surprising role of pairing collapse.Comment: 19 pages, 8 figures Revised version To be published in Phys. Rev.

    On the ground--state energy of finite Fermi systems

    Get PDF
    We study the ground--state shell correction energy of a fermionic gas in a mean--field approximation. Considering the particular case of 3D harmonic trapping potentials, we show the rich variety of different behaviors (erratic, regular, supershells) that appear when the number--theoretic properties of the frequency ratios are varied. For self--bound systems, where the shape of the trapping potential is determined by energy minimization, we obtain accurate analytic formulas for the deformation and the shell correction energy as a function of the particle number NN. Special attention is devoted to the average of the shell correction energy. We explain why in self--bound systems it is a decreasing (and negative) function of NN.Comment: 10 pages, 5 figures, 2 table

    Expansion of CORE-SINEs in the genome of the Tasmanian devil

    Get PDF
    Background: The genome of the carnivorous marsupial, the Tasmanian devil (Sarcophilus harrisii, Order: Dasyuromorphia), was sequenced in the hopes of finding a cure for or gaining a better understanding of the contagious devil facial tumor disease that is threatening the species’ survival. To better understand the Tasmanian devil genome, we screened it for transposable elements and investigated the dynamics of short interspersed element (SINE) retroposons. Results: The temporal history of Tasmanian devil SINEs, elucidated using a transposition in transposition analysis, indicates that WSINE1, a CORE-SINE present in around 200,000 copies, is the most recently active element. Moreover, we discovered a new subtype of WSINE1 (WSINE1b) that comprises at least 90% of all Tasmanian devil WSINE1s. The frequencies of WSINE1 subtypes differ in the genomes of two of the other Australian marsupial orders. A co-segregation analysis indicated that at least 66 subfamilies of WSINE1 evolved during the evolution of Dasyuromorphia. Using a substitution rate derived from WSINE1 insertions, the ages of the subfamilies were estimated and correlated with a newly established phylogeny of Dasyuromorphia. Phylogenetic analyses and divergence time estimates of mitochondrial genome data indicate a rapid radiation of the Tasmanian devil and the closest relative the quolls (Dasyurus) around 14 million years ago. Conclusions: The radiation and abundance of CORE-SINEs in marsupial genomes indicates that they may be a major player in the evolution of marsupials. It is evident that the early phases of evolution of the carnivorous marsupial order Dasyuromorphia was characterized by a burst of SINE activity. A correlation between a speciation event and a major burst of retroposon activity is for the first time shown in a marsupial genome

    Electronic structure of GaAs1-xNx alloy by soft-X-ray absorption and emission: Origin of the reduced optical efficiency

    Full text link
    The local electronic structure of N atoms in a diluted GaAs1-xNx (x=3%) alloy, in view of applications in optoelectronics, is determined for the first time using soft-X-ray absorption (SXA) and emission (SXE). Deviations from crystalline GaN, in particular in the conduction band, are dramatic. Employing the orbital character and elemental specificity of the SXE/SXA spectroscopies, we identify a charge transfer from the N atoms at the valence band maximum, reducing the overlap with the wavefunction in conduction band minimum, as the main factor limiting the optical efficiency of GaAs1-xNx alloys. Moreover, a k-conserving process of resonant inelastic x-ray scattering involving the L1 derived valence and conduction states is discovered.Comment: 3 pages, physica status solidi (Rapid Research Notes), in pres

    On the dependence between UV luminosity and Lyman-alpha equivalent width in high redshift galaxies

    Full text link
    We show that with the simple assumption of no correlation between the Ly-alpha equivalent width and the UV luminosity of a galaxy, the observed distribution of high redshift galaxies in an equivalent width - absolute UV magnitude plane can be reproduced. We further show that there is no dependence between Ly-alpha equivalent width and Ly-alpha luminosity in a sample of Ly-alpha emitters. The test was expanded to Lyman-break galaxies and again no dependence was found. Simultaneously, we show that a recently proposed lack of large equivalent width, UV bright galaxies (Ando et al. 2006) can be explained by a simple observational effect, based on too small survey volumes.Comment: 7 pages, 3 figures, 2 tables, accepted in MNRA

    Role of low-ll component in deformed wave functions near the continuum threshold

    Get PDF
    The structure of deformed single-particle wave functions in the vicinity of zero energy limit is studied using a schematic model with a quadrupole deformed finite square-well potential. For this purpose, we expand the single-particle wave functions in multipoles and seek for the bound state and the Gamow resonance solutions. We find that, for the Kπ=0+K^{\pi}=0^{+} states, where KK is the zz-component of the orbital angular momentum, the probability of each multipole components in the deformed wave function is connected between the negative energy and the positive energy regions asymptotically, although it has a discontinuity around the threshold. This implies that the Kπ=0+K^{\pi}=0^{+} resonant level exists physically unless the l=0l=0 component is inherently large when extrapolated to the well bound region. The dependence of the multipole components on deformation is also discussed
    corecore