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The structure of deformed single-particle wave functions in the vicinity of zero energy limit is studied using
a schematic model with a quadrupole deformed finite square-well potential. For this purpose, we expand the
single-particle wave functions in multipoles and seek for the bound state and the Gamow resonance solutions.
We find that, for the Kπ = 0+ states, where K is the z-component of the orbital angular momentum, the
probability of each multipole components in the deformed wave function is connected between the negative
energy and the positive energy regions asymptotically, although it has a discontinuity around the threshold. This
implies that the Kπ = 0+ resonant level exists physically unless the l = 0 component is inherently large when
extrapolated to the well bound region. The dependence of the multipole components on deformation is also
discussed.

DOI: 10.1103/PhysRevC.72.064311 PACS number(s): 21.10.Pc, 21.60.Jz, 24.30.Gd

I. INTRODUCTION

The physics of nuclei located far from the β stability line
has been one of the main current subjects of nuclear physics.
One of the unique properties of drip-line nuclei is that the
Fermi level lies close to zero. An understanding of single-
particle levels in the continuum is essential in describing the
nuclear structure close to, and beyond, the drip line, since the
shell structure of both bound and continuum levels plays an
important role in many-body correlations such as deformation
and pairing.

It has been argued recently that, as the binding energy
approaches zero, the s-wave component of a bound single-
particle wave function behaves uniquely in a deformed
potential, and plays a dominant role in Nilsson levels with
�π = 1/2+ [1,2]. Naively, resonant levels can be considered
as an extension of bound states into the positive energy regime.
Therefore, if the s-wave component remains dominant in the
continuum, the level with �π = 1/2+ might not exist as a
physical state. Notice that, for a Nilsson Hamiltonian [3],
single-particle levels with � = 1/2 belonging to a high-j orbit
comes down in energy in a prolately deformed potential. These
states play an important role in generating the deformed shell
structure. It is therefore crucially important to investigate the
role of the low-l component in a deformed wave function
for � = 1/2 states and its transition from bound to resonant
levels.

The structure of deformed single-particle levels in the
continuum has been investigated in a few publications. In
Ref. [4], the resonance energy of negative parity states was
studied by employing the Gamow wave function. The analytic
continuation in the coupling constant (ACCC) method was
applied to study single-particle resonance states in spherical
and deformed nuclei [5]. Using the multichannel scattering
approach, Ref. [6] has studied how the single-particle energies
change from bound to resonant levels when the depth of the
potential is varied. In order to fully understand the structure of
deformed single-particle levels in the continuum, however,

a detailed study of the wave function components is still
necessary, in addition to the resonance energy itself.

In this paper, we investigate the structure of deformed
wave functions around zero energy using the Gamow state
representation for a resonant state. To this end, we use a
schematic model: A Y20 deformed finite square-well potential
without spin-orbit force. This enables us to determine the
single-particle wave function analytically. To use the Gamow
state for resonance has a certain advantage in analyzing
the deformed wave function. That is, we are able to treat the
bound and the resonant levels on the same footing, because the
Gamow states are normalizable just like the bound states [7].
It is then straightforward to see how the fraction of each
component in the deformed wave functions changes when
the single-particle level changes its character from bound
to resonant. A slight disadvantage of this approach is that
the expectation value with the Gamow states, including the
probability of wave function components, becomes complex
numbers. However, this is not a big defect for our purpose,
since the physical quantity of the expectation values can be
obtained by taking their real part [8,9].

The paper is organized as follows. In the next section, we
present our model for a deformed single-particle potential.
Numerical results and discussion are given in Sec. III. Finally,
we summarize the paper in Sec. IV.

II. MODEL

Our purpose is to study the structure of the wave function
in a deformed single-particle potential. To this end, we
employ a schematic model for the single-particle potential,
that is, a deformed square-well potential without the spin-orbit
force,

V (r) = −V0 θ (R(r̂) − r), (1)

where R(r̂) = R0(1 + β2Y20(r̂)). For simplicity, we expand
this potential up to the first order of deformation parameter β2
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and obtain

V (r) � −V0 [θ (R0 − r) + R0β2Y20(r̂)δ(r − R0)] . (2)

In order to solve the Schrödinger equation with this potential,
we expand the wave function in the multipoles as

�K (r) =
∑

l

ulK (r)

r
YlK (r̂), (3)

where the quantum number K(= �) is the z-component of the
orbital angular momentum l. By projecting out each multipole
component, we obtain the coupled equations for the radial
wave functions given by[

− h̄2

2m

d2

dr2
− V0θ (R0 − r) + h̄2l(l + 1)

2mr2
− E

]
ulK (r)

= V0R0β2δ(r − R0)
∑

l′
〈lK|Y20|l′K〉ul′K (r). (4)

For the positive energy solution, E > 0, we impose the
boundary condition corresponding to the Gamow state for
resonance. That is, the wave function is regular at the origin
and satisfies the outgoing boundary condition u(r) ∼ eikr

asymptotically. This boundary condition is satisfied only if the
energy is complex, E = h̄2k2/2m = ER − i�/2, where ER

and � are the resonance energy and the width, respectively.
In the case of � = 0 and ER < 0, the Gamow state wave
function is equivalent to the bound state wave function,
which satisfies the decaying asymptotics u(r) ∼ e−αr , where
α =

√
−2mER/h̄2.

The solutions of the coupled-channels equations (4) there-
fore read (we omit the subscript K for simplicity of notation),

ul(r) =
{

Al rjl(k1r) (r < R0),

Bl rh
(+)
l (kr) (r � R0),

(5)

where k1 =
√

2m(E + V0)/h̄2, k =
√

2mE/h̄2, and jl(x),
h

(+)
l (x) are the spherical Bessel and Hankel functions, re-

spectively. The amplitudes Al and Bl are determined by the
matching condition at r = R0 given by

ul(R−) = ul(R+), (6)

− h̄2

2m
[u′

l(R+) − u′
l(R−)] = V0R0β2

∑
l′

〈lK|Y20|l′K〉ul′(R0),

(7)

where R± represents limε→0 R0 ± ε.
The bound state wave function is normalized as

1 =
∫

d r |�K (r)|2 =
∑

l

Nl, (8)

where

Nl =
∫ ∞

0
dr|ul(r)|2. (9)

The Gamow state wave function can be also normal-
ized by introducing the regularization factor as Zel’dovich

proposed [10]

Nl = lim
ε→0

∫ ∞

0
dre−εr2{ul(r)}2 (10)

=
∫ R0

0
dr{Alrjl(k1r)}2

+ lim
ε→0

∫ ∞

R0

dre−εr2{Blrh
(+)
l (kr)}2. (11)

Using a property of the spherical Bessel function [11], one can
evaluate the first term as∫ R0

0
dr{Al rjl(k1r)}2 = A2

l R
3
0

2
({jl(k1R0)}2

− jl−1(k1R0)jl+1(k1R0)). (12)

The second term can be also evaluated using the contour
integral method or equivalently the complex scaling method
(CSM). The result is given by [12]

lim
ε→0

∫ ∞

R0

dre−εr2{Bl rh
(+)
l (kr)}2

= −B2
l R

3
0

2
({h(+)

l (kR0)}2 − h
(+)
l−1(kR0)h(+)

l+1(kR0)). (13)

Note that the fraction of multipole components Nl is in general
a complex number for the Gamow state wave function.

III. RESULTS AND DISCUSSION

Let us now discuss the behavior of the low-l components
in deformed wave functions. In Sec. III A, we vary the
potential depth for a fixed deformation parameter, while we
vary the deformation parameter for a fixed potential depth in
Sec. III B.

A. Dependence on potential depth

We first study the wave functions at a fixed deformation,
β2 = 0.5. Figure 1 shows the real and imaginary parts of the
energy for a Kπ = 0+ state in varying the potential depth V0.
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FIG. 1. The real part of the energy and the resonance width for a
Kπ = 0+ state with various potential depths. In the inset, the behavior
around zero energy is enlarged. The corresponding potential depths
are shown in Fig.2.
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FIG. 2. The real part of the energy for Kπ = 0+ state as a function
of the potential depth. In the inset, the behavior around zero energy
is enlarged.

The correspondence between the potential depth and the real
part of the energy is shown in Fig. 2. We observe that the width
is quite large even for small values of positive energy. This
large width is caused by the admixture of the l = 0 component
in the wave function. Indeed, as shown in Fig. 3, in the small
positive energy region (0.1 MeV < �(E) < 1.0 MeV), the
behavior of the width is consistent with the relation expected
for the s-wave resonance state [4,6,13],

� ∝ �(E)l+1/2 × �(Nl)
∣∣∣
l=0

, (14)

where �(E) denotes the real part of E.
Below ER =0.1 MeV, the width is larger than the solid

line, which predicts � = 0 at ER = 0. Also, we found a
nonmonotonic behavior in the eigenenergy between V0 =
41.62 and 41.68 MeV, where the solution has ER < 0 and
� > 0, as is shown in the inset of Fig. 2. These facts
might be related to the possible presence of the antibound
(κ = 0, γ > 0) and/or “crazy” resonant (0 < κ < γ ) states,
where k = κ − iγ , as presented in Ref. [14] for a spherical
square-well potential (see Fig. 1 of Ref. [14]). In order to
study the presence of these states in the present deformed
potential, we plot the trajectory for the pole of S-matrix in the
complex momentum plane in Fig. 4. As the potential depth
is made shallower, the pole comes down along the imaginary
axis. In the present example, the pole goes through k = 0
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FIG. 3. Same as Fig. 1, but in the logarithmic scale. The solid line
is an expectation for the pure s-wave configuration given by Eq. (14).
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FIG. 4. The trajectory for the pole of S-matrix in the complex
momentum plane. In the inset, the behavior around zero momentum
is enlarged.

and comes into the antibound (virtual) state region. With a
shallower potential, the pole begins to have a finite real part,
which corresponds to the “crazy” resonance, and eventually
comes into the normal resonance region (κ > γ > 0). It is
thus apparent that this state has finite width even in the limit
of ER → 0+.

Above 1.0 MeV also, the width is larger than that expected
by Eq. (14). This is due to the fact that the relation Eq. (14) is
valid only for small values of k [13].

In Fig. 2, we see that the slope of the single-particle
energy as a function of the potential depth, dE/dV0, or
equivalently dE/dA, where A is the mass number, becomes
smaller in approaching the zero binding energy. For a spherical
square-well potential, it has been shown that dEl/dA → 0 for
l = 0 in the limit of zero binding [15]. This is due to the fact
that the s-wave function can be easily extended outside the
nuclear potential and also the kinetic energy is reduced due
to the absence of the centrifugal barrier [15]. This property
implies that the l = 0 component becomes dominant in a
deformed wave function around the zero-binding region. On
the other hand, the slope has a finite value in the positive
energy region even in the limit of zero energy, thus the slope
has a discontinuity around zero energy. Therefore, care must
be taken, as discussed in Ref. [14], when one estimates the
energy of a deformed resonant level with Kπ = 0+ by using
the ACCC method [5].

We now discuss the energy dependence of the fraction
of the multipole components in the deformed wave function.
Figure 5 shows the real part of the fraction for each multipole
component in the Gamow state wave function with Kπ =
0+. When the binding energy approaches zero, the s-wave
component in the deformed wave function becomes dominant.
In contrast, in the positive energy region, all the multipole
components have a finite value even in the zero energy limit
and show a similarity with the well bound cases. As we will
discuss in the next section (see Fig. 10 below), the state shown
in Fig. 5 originates from the 2d orbit in the spherical limit. This
state couples with the lower-lying 2s, 1g and the higher-lying
3s states. The dominant component is l = 4 both in well bound
and in resonant levels, as one sees in Fig. 5. This suggests
that both the well bound and the resonant levels have a similar
property to each other and the intuitive picture that the resonant
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FIG. 5. The real part of the fraction for each multipole component
Nl for the Kπ = 0+ state. The solid, dotted, and dot-dashed lines
indicate the l = 0, 2 and l = 4 components, respectively.

level is an extension of a bound level into the continuum is
valid.

Only at the limit of zero binding, the singular behavior of the
l = 0 component appears. This is entirely due to the property
of the normalization integral, Eq. (13). Since the Gamow state
wave function is equivalent to the bound state wave function for
ER < 0, � = 0, Eq. (13) holds both for the resonance and the
bound states. For small values of k, Eq. (13) is proportional to
k2l−1 as discussed in Refs. [1,16], that diverges only for l = 0
as k → 0. When the total wave function �K is normalized
according to Eq. (8), then only the s-wave component is
allowed in the wave function [1]. This condition is always met
for the bound state when the binding energy approaches the
threshold. In principle, the same consideration can apply also
to the resonance state when the resonance energy approaches
zero from the positive energy side. However, as we show in
Fig. 1, the resonance state acquires a relatively large width
even when the real part of the energy is infinitesimally small.
Since k is defined as k =

√
2m(ER − i�/2)/h̄2, it remains

a constant even if ER itself approaches zero. This leads to
the disappearance of the “s-wave dominance” in the positive
energy side.

We next study the case for Kπ = 0−. In Figs. 6 and 7,
we show the dependence of the single-particle energy on
the potential depth. In contrast to the case for Kπ = 0+,
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FIG. 6. Same as Fig. 1, but for a Kπ = 0− state.
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FIG. 7. Same as Fig. 2, but for the Kπ = 0− state.

due to the presence of the centrifugal barrier, we do not
see any singular behavior around zero energy. Single-particle
energies are connected smoothly when changing the potential
depth, and the width increases gradually in the small positive
energy region. Figure 8 shows the fraction of each multipole
component in the Gamow state wave function. As the binding
energy approaches zero, the p-wave component becomes
relatively large, that is consistent with the dominance of low-l
component in the limit of zero binding energy discussed in
Ref. [2]. The fractions are connected smoothly and asymptot-
ically in the bound and resonant regions.

B. Deformation dependence

In this subsection, we study the deformation dependence of
the low-l component in deformed wave functions for a fixed
potential depth. In the realistic situation, the location of single-
particle levels changes as a function of nuclear deformation.
Especially, the levels of � = 1/2 (K = 0) with (without) spin-
orbit force belonging to high-j (high-l) orbit in the spherical
limit play an important role in nuclear deformation.

Figure 9 shows the resonance energy and width when the
deformation parameter is varied from β2 = 0.0 to 0.5. The
potential depth V0 and the radius R0 are set to be 45.0 MeV
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FIG. 8. The real part of the fraction for each multipole compo-
nents Nl for the Kπ = 0− state. The solid, dotted, and dot-dashed
lines indicate the l = 1, 3 and l = 5 components, respectively.
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FIG. 9. Same as Fig. 1 except for varying the deformation. This
level corresponds to the one originating from the 2d orbit in the
spherical limit. The deformation dependence of the single-particle
energies is shown in Fig. 10.

and 5.0 fm, respectively. This state belongs to the 2d orbit at
β2 = 0.0 as shown in Fig. 10. At around zero energy, we see
the similar behavior as in Fig. 1: The width is quite large even
for the small values of positive energy, which implies that the
l = 0 component is responsible for the width of the resonant
level.

The corresponding wave function components for this state
are shown in Fig. 11. As in Fig. 5, we see the singular behavior
for the s-wave component at around zero-binding energy, cor-
responding to the “s-wave dominance” in the limit of zero bind-
ing. Except for the zero-energy region, however, we see that the
fraction of each multipole components is linked asymptotically
and is smoothly connected to the d-state resonant level in the
spherical limit. From this calculation, it is evident that the
singular behavior of the l = 0 component for the Kπ = 0+
state occurs only just below the continuum threshold and
this state is connected to the physical resonant level in the
continuum. Furthermore, the fraction of each-l components in
the deformed wave function is connected smoothly from the
bound to the resonant levels except for the region near the
threshold.
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FIG. 10. Single-particle energies for the Kπ = 0+ state as a
function of deformation parameter β2. The potential depth is V0 =
45.0 (MeV), and the potential radius R0 = 5.0 (fm).
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FIG. 11. Same as Fig. 5 except for varying the deformation.

IV. SUMMARY

We have analyzed the structure of the deformed wave
functions around zero energy using the Gamow state wave
function for resonance, with which one can treat the resonant
and bound levels on the same footing and thus analyze the
wave function continuously from the negative to the positive
energy regions. For this purpose, we developed a schematic
model with a deformed square-well potential. Since the wave
functions can be obtained analytically with this model, detailed
analyses of the deformed wave functions were possible. For a
Kπ = 0+ state, we have found a singularity in the resonance
width as well as in the s-wave component in the deformed wave
function at around zero energy. That is, the width becomes
considerably large even in the small positive energy region
and the l = 0 component approaches unity in the limit of
zero binding. We have shown that the “s-wave dominance”
occurs only at the threshold of continuum. Far from the
zero energy region, the probability of each-l component is
connected asymptotically. This implies that the Kπ = 0+
resonant level exists unless the l = 0 component is large
inherently when extrapolated to the well bound region. In
contrast, for the Kπ = 0− state, we did not find any singular
behavior even in the zero-energy limit. The single-particle
energies are connected smoothly when changing the potential
depth, and the width increases gradually in the small positive
energy region. The probability of each-l component in the
wave function is also connected smoothly and asymptotically
between the bound and the resonant regions.
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