62 research outputs found

    Versatile control of Plasmodium falciparum gene expression with an inducible protein–RNA interaction

    Get PDF
    The available tools for conditional gene expression in Plasmodium falciparum are limited. Here, to enable reliable control of target gene expression, we build a system to efficiently modulate translation. We overcame several problems associated with other approaches for regulating gene expression in P. falciparum. Specifically, our system functions predictably across several native and engineered promoter contexts, and affords control over reporter and native parasite proteins irrespective of their subcellular compartmentalization. Induction and repression of gene expression are rapid, homogeneous and stable over prolonged periods. To demonstrate practical application of our system, we used it to reveal direct links between antimalarial drugs and their native parasite molecular target. This is an important outcome given the rapid spread of resistance, and intensified efforts to efficiently discover and optimize new antimalarial drugs. Overall, the studies presented highlight the utility of our system for broadly controlling gene expression and performing functional genetics in P. falciparum.National Institutes of Health (U.S.) (Health Director's New Innovator Award 1DP2OD007124)Bill & Melinda Gates Foundation (Grand Challenges Explorations Initiative OPP1069759)National Institute of Environmental Health Sciences (Predoctoral Training Grant 5-T32-ES007020)National Institute of General Medical Sciences (U.S.) (Biotechnology Training Grant 5-T32-GM08334)Thomas and Stacey Siebel FoundationMIT Start-up Fund

    Inducible Control of Subcellular RNA Localization Using a Synthetic Protein-RNA Aptamer Interaction

    Get PDF
    Evidence is accumulating in support of the functional importance of subcellular RNA localization in diverse biological contexts. In different cell types, distinct RNA localization patterns are frequently observed, and the available data indicate that this is achieved through a series of highly coordinated events. Classically, cis–elements within the RNA to be localized are recognized by RNA-binding proteins (RBPs), which then direct specific localization of a target RNA. Until now, the precise control of the spatiotemporal parameters inherent to regulating RNA localization has not been experimentally possible. Here, we demonstrate the development and use of a chemically–inducible RNA–protein interaction to regulate subcellular RNA localization. Our system is composed primarily of two parts: (i) the Tet Repressor protein (TetR) genetically fused to proteins natively involved in localizing endogenous transcripts; and (ii) a target transcript containing genetically encoded TetR–binding RNA aptamers. TetR–fusion protein binding to the target RNA and subsequent localization of the latter are directly regulated by doxycycline. Using this platform, we demonstrate that enhanced and controlled subcellular localization of engineered transcripts are achievable. We also analyze rules for forward engineering this RNA localization system in an effort to facilitate its straightforward application to studying RNA localization more generally.National Institutes of Health (U.S.) (Director’s New Innovator Award Program (grant number 1DP2OD007124 )

    Inhibition of resistance-refractory P. falciparum kinase PKG delivers prophylactic, blood stage, and transmission-blocking antiplasmodial activity

    Get PDF
    The search for antimalarial chemotypes with modes of action unrelated to existing drugs has intensified with the recent failure of first-line therapies across Southeast Asia. Here, we show that the trisubstituted imidazole MMV030084 potently inhibits hepatocyte invasion by Plasmodium sporozoites, merozoite egress from asexual blood stage schizonts, and male gamete exflagellation. Metabolomic, phosphoproteomic, and chemoproteomic studies, validated with conditional knockdown parasites, molecular docking, and recombinant kinase assays, identified cGMP-dependent protein kinase (PKG) as the primary target of MMV030084. PKG is known to play essential roles in Plasmodium invasion of and egress from host cells, matching MMV030084's activity profile. Resistance selections and gene editing identified tyrosine kinase-like protein 3 as a low-level resistance mediator for PKG inhibitors, while PKG itself never mutated under pressure. These studies highlight PKG as a resistance-refractory antimalarial target throughout the Plasmodium life cycle and promote MMV030084 as a promising Plasmodium PKG-targeting chemotype

    Setting our sights on infectious diseases

    Get PDF
    In May 2019, the Wellcome Centre for Anti-Infectives Research (WCAIR) at the University of Dundee, UK, held an international conference with the aim of discussing some key questions around discovering new medicines for infectious diseases and a particular focus on diseases affecting Low and Middle Income Countries. There is an urgent need for new drugs to treat most infectious diseases. We were keen to see if there were lessons that we could learn across different disease areas and between the preclinical and clinical phases with the aim of exploring how we can improve and speed up the drug discovery, translational, and clinical development processes. We started with an introductory session on the current situation and then worked backward from clinical development to combination therapy, pharmacokinetic/pharmacodynamic (PK/PD) studies, drug discovery pathways, and new starting points and targets. This Viewpoint aims to capture some of the learnings

    Chemogenomics identifies acetyl-coenzyme A synthetase as a target for malaria treatment and prevention

    Get PDF
    We identify the Plasmodium falciparum acetyl-coenzyme A synthetase (PfAcAS) as a druggable target, using genetic and chemical validation. In vitro evolution of resistance with two antiplasmodial drug-like compounds (MMV019721 and MMV084978) selects for mutations in PfAcAS. Metabolic profiling of compound-treated parasites reveals changes in acetyl-CoA levels for both compounds. Genome editing confirms that mutations in PfAcAS are sufficient to confer resistance. Knockdown studies demonstrate that PfAcAS is essential for asexual growth, and partial knockdown induces hypersensitivity to both compounds. In vitro biochemical assays using recombinantly expressed PfAcAS validates that MMV019721 and MMV084978 directly inhibit the enzyme by preventing CoA and acetate binding, respectively. Immunolocalization studies reveal that PfAcAS is primarily localized to the nucleus. Functional studies demonstrate inhibition of histone acetylation in compound-treated wild-type, but not in resistant parasites. Our findings identify and validate PfAcAS as an essential, druggable target involved in the epigenetic regulation of gene expression

    The antimalarial MMV688533 provides potential for single-dose cures with a high barrier to

    Get PDF
    The emergence and spread of Plasmodium falciparum resistance to first-line antimalarials creates an imperative to identify and develop potent preclinical candidates with distinct modes of action. Here, we report the identification of MMV688533, an acylguanidine that was developed following a whole-cell screen with compounds known to hit high-value targets in human cells. MMV688533 displays fast parasite clearance in vitro and is not cross-resistant with known antimalarials. In a P. falciparum NSG mouse model, MMV688533 displays a long-lasting pharmacokinetic profile and excellent safety. Selection studies reveal a low propensity for resistance, with modest loss of potency mediated by point mutations in PfACG1 and PfEHD. These proteins are implicated in intracellular trafficking, lipid utilization, and endocytosis, suggesting interference with these pathways as a potential mode of action. This preclinical candidate may offer the potential for a single low-dose cure for malaria

    Advances in Malaria Pharmacology and the online Guide to MALARIA PHARMACOLOGY: IUPHAR Review X

    Get PDF
    Antimalarial drug discovery has until recently been driven by high-throughput phenotypic cellular screening, allowing millions of compounds to be assayed and delivering clinical drug candidates. In this review, we will focus on target-based approaches, describing recent advances in our understanding of druggable targets in the malaria parasite. Targeting multiple stages of the Plasmodium lifecycle, rather than just the clinically symptomatic asexual blood stage, has become a requirement for new antimalarial medicines, and we link pharmacological data clearly to the parasite stages to which it applies. Finally, we highlight the IUPHAR/MMV Guide to MALARIA PHARMACOLOGY, a web resource developed for the malaria research community that provides open and optimized access to published data on malaria pharmacology
    corecore