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Abstract

The available tools for conditional gene expression in Plasmodium falciparum are limited. Here, 

to enable reliable control of target gene expression, we build a system to efficiently modulate 

translation. We overcame several problems associated with other approaches for regulating gene 

expression in P. falciparum. Specifically, our system functions predictably across several native 

and engineered promoter contexts, and affords control over reporter and native parasite proteins 

irrespective of their subcellular compartmentalization. Induction and repression of gene expression 

are rapid, homogeneous, and stable over prolonged periods. To demonstrate practical application 

of our system, we used it to reveal direct links between antimalarial drugs and their native parasite 

molecular target. This is an important out come given the rapid spread of resistance, and 

intensified efforts to efficiently discover and optimize new antimalarial drugs. Overall, the studies 

presented highlight the utility of our system for broadly controlling gene expression and 

performing functional genetics in P. falciparum.

Introduction

Malaria is a disease caused by several species of Plasmodium parasites, and continues to 

bean enormous burden on global human health. Few preventative and treatment options are 

available. A key barrier to defining parasite vulnerabilities that can be targeted for 

therapeutic purposes has been the lack of a more complete genetic toolkit. For P. 

falciparum, the parasite responsible for the majority of human malaria deaths, the RNA 

interference strategy that has proven invaluable in other organisms is unavailable1. 
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Conditional recombination to delete genes has been recently demonstrated2, but a generally 

applicable system for reversible regulation of gene expression remains highly sought. 

Methods to achieve robust transcriptional regulation remain elusive, though some attempts 

have been described3, 4. A high degree of expression heterogeneity, and the unpredictable 

and rapid loss of regulatory behavior have significantly limited their use in functional 

studies.3, 5 For these reasons, efforts to functionally regulate parasite genes, such as PfCRT, 

using this approach were unsuccessful5. Recently, a modified version of this inducible 

transcription system has been described, and functional control of gene expression was 

achieved in the genetically tractable rodent model parasite, P. berghei4. However, functional 

regulation of gene expression in the more recalcitrant P. falciparum was not reported. 

Additionally, while control of GFP reporter expression was assessed in P. falciparum, flow 

cytometry data on the cell-to-cell variability of this regulation is unavailable. Thus, it is 

unclear whether the key issues of heterogeneous expression and spontaneous loss of 

regulation observed specifically in P. falciparum have been resolved. From this perspective, 

the long-term reliability of existing inducible transcription systems in P. falciparum is 

unknown. An alternative system based on the inducible degradation of targeted proteins has 

been used effectively in some instances6, 7. However, it is not generalizable to many genes, 

as the target protein must:(1) tolerate fusion to a ligand-sensitive degradation domain (DD); 

and (2) be accessible to the parasite’s proteasome. This limits reliably performing functional 

studies on a substantial number of proteins that are trafficked to various subcellular 

compartments8–10 and the host red blood cell11. Recently, the glmS ribozyme has been used 

to post-transcriptionally control gene expression in P. falciparum12. However, together with 

the DD system and its limitations described above, these comprise an extremely limited 

toolkit for achieving reversible control of gene expression in P. falciparum when compared 

to the many robust and orthogonal options available for regulating gene expression in other 

organisms.

We previously engineered a system for inducible control of eukaryotic translation that uses a 

protein-RNA interaction controlled by a tetracycline analog13 (Fig. 1a). As the cytosolic 

translation machinery in P. falciparum is highly conserved with other eukaryotes14, we 

reasoned that we should be able to implement our system to control translation in the 

parasite. Three key attributes of this system are that it enables experimental control of gene 

expression independently of: (1) transcriptional control; (2) modification of the target 

protein in a manner that potentially compromises its function; and (3) the specific 

compartment to which target proteins are trafficked. These satisfy important criteria for 

defining a broadly applicable gene regulatory system. Here, we demonstrate implementation 

of our TetR-aptamer system to control both reporter and native gene expression in P. 

falciparum in a manner that meets the criteria outlined above. We also show that this system 

is useful for studying the function of native parasite genes.

Results

Regulatory system design and functional validation

We used a plasmid-based transient screening approach to establish the basic functionality of 

our system in P. falciparum. We constructed a3D7 parasite strain stably expressing TetR 
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from a single-copy chromosomal locus (Supplementary Fig. 1a,b and Supplementary Table 

1), and transfected it with dual-luciferase reporter plasmids expressing firefly luciferase 

(FLuc) under the control of the TetR-binding aptamer 5-1.17,and a reference Renilla 

luciferase (RLuc) (Fig. 1b). Addition of an hydro tetracycline (aTc) to transiently transfected 

parasites yielded an ~80% change in FLuc expression (Fig. 1c), similar to what we observed 

in yeast13. This regulatory behavior was consistent across different promoter/5′-untranslated 

region (5′UTR) contexts, with a similar dynamic range observed when regulating the hsp86 

and calmodulin5′UTRs. The mutant sequence 5-1.17m2, which does not interact with 

TetR13, yielded no aTc-dependent regulation, as expected.

To further characterize this system, we built single-plasmids expressing aptamer-regulated 

FLuc, a constitutive reference RLuc, TetR, and a G418-selectable marker (Fig. 1b). These 

constructs express polycistronic messages that use 2A-like peptides to yield multiple distinct 

proteins15. A key benefit of this ‘all-in-one’ design is that it obviates the need for a 

dedicated TetR-expressing background line, and makes this system broadly useful in any P. 

falciparum strain of interest. We transfected single-plasmid constructs into parasite strain 

Dd2 and measured aTc-dependent luciferase expression after G418 selection. In this context, 

the system produced a similar ~80% regulation upon aTc addition (Fig. 1d). FLuc 

expression increased in a sigmoidal manner with aTc, reaching a maximum at an aTc 

concentration well below the minimum that inhibits parasite growth (Supplementary Fig.2 

a,b). To establish that regulation occurs at the translational level, and not via a change in 

steady-state mRNA concentration, we measured FLuc mRNA by quantitative PCR 

(Supplementary Fig. 3a). We also verified by Western blot analysis that aTc has no impact 

on TetR expression(Supplementary Fig. 3b). Comparing aptamer-regulated and non-aptamer 

FLuc expression, we observed that inclusion of the aptamer sequence (in the absence of 

TetR binding) decreased maximal expression possible from a given 5′ UTR by about two 

fold (Fig. 1e).

Regulation dynamics during blood stage parasite development

P. falciparum develops over a 48-hour intra-erythrocytic developmental cycle (IDC) during 

which individual genes are expressed in a temporally variable manner16, 17. To best study 

the IDC, the TetR-aptamer system should allow rapid changes in target gene expression, 

with induction and washout times that are significantly less than a single IDC. We 

characterized aTc-dependent response kinetics in synchronized parasites expressing a stable 

5-1.17–FLuc or 5-1.17m2–FLuc reporter (Fig. 2). In one scenario, initially induced or 

repressed late schizont stage cultures (40 hours post invasion) were washed, and each 

maintained thereafter in either the presence or absence of aTc over the next IDC (Fig. 2a). 

At 12 h post aTc addition, FLuc expression was indistinguishable from a culture 

continuously exposed to aTc. Repression after aTc washout was similarly rapid, and FLuc 

levels returned to basal repressed levels early into the IDC. In a second scenario, induction 

or washout was performed soon after invasion (early ring stage) and FLuc expression was 

monitored with in the same IDC (Fig. 2b). The changes in expression were nearly complete 

at the first time point (5 h), although the apparent magnitude of FLuc repression after aTc 

washout was not as complete under these conditions. The inherent turnover rate of pre-

synthesized FLuc protein, rather than TetR-aptamer interaction dynamics, is likely rate 
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limiting and gives rise to the residual FLuc activity detected in the aTc washout phase of 

these experiments. Consistent with this interpretation, engineered mRNA and protein 

destabilizing signals are needed to improve the reliability of FLuc as a reporter of decreased 

protein synthesis in rapid kinetics studies18.

Regulation in chromosomal context and of subcellular targets

Towards adapting the TetR-aptamer system to regulate endogenous gene expression, we 

tested its regulatory performance using integrated reporter genes. We first integrated our 

single-plasmid attP+ constructs (Supplementary Fig. 4a,b) at single copy into the 

chromosome at the cg6 locus of NF54-attB parasites19 using the Bxb1 site-specific 

recombinase20. The expression of both luciferase and green fluorescent protein (GFP) 

reporters were regulated similarly (~80%) in this context (Supplementary Fig. 5a). 

Additionally, the GFP reporter illustrated that both the repressed and induced parasite 

populations were homogeneously regulated (Supplementary Fig. 5b). Furthermore, aTc-

dependent regulation is fully preserved with our system even after prolonged continuous 

culture (> 8 months) in both episomal and integrated contexts. Significantly, this contrasts 

with a previously reported TetR-based transcriptional system where regulation was very 

heterogeneous and unpredictably short-lived3, 5.

We then examined the utility of our system to regulate the expression of genes targeted to 

various parasite subcellular organelles and the host red blood cell while preserving proper 

trafficking. To our GFP construct, we added N-terminal targeting peptides that mediate 

trafficking to the apicoplast21, mitochondrion22, or host erythrocyte cytoplasm23, 24 

downstream of the regulatory aptamer. As translation likely initiates within the aptamer13, it 

is important to establish that the aptamer-encoded short leader peptide does not interfere 

with target protein trafficking. Direct or indirect fluorescence microscopy of live or 

antibody-probed fixed cells, respectively, revealed that including the aptamer upstream of 

the subcellular targeting sequence did not interfere with proper protein trafficking (Fig. 3a). 

Flow cytometry analysis again confirmed that aTc-dependent induction of GFP expression is 

homogeneous in these strains (Supplementary Fig. 5c). The organelle-targeted GFP 

constructs yielded lower fluorescence signal. As the signal-to-noise ratio was too low to 

accurately quantify aTc-dependent changes in GFP expression by flow cytometry, we 

quantified GFP expression by ELISA (Supplementary Fig. 5d). This analysis revealed aTc-

dependent regulation of GFP targeted to the apicoplast and mitochondrion is similar to that 

achieved during cytosolic expression. We further confirmed these findings using the native 

parasite exported protein knob-associated histidine rich protein (KAHRP; PF3D7_0202000). 

This protein is exported to the host red blood cell and associates with the cytoskeletal 

network just beneath the red blood cell membrane, which results in a rim fluorescence 

pattern upon microscopy25, 26. We constructed a P. falciparum centromere plasmid27 from 

which GFP fused to KAHRP (KAHRP-GFP)25 is expressed under the control of the native 

KAHRP upstream region (~2 kb) and regulated by aptamer 5-1.17. This plasmid uses the 

versatile ‘all-in-one’ design introduced earlier and also encodes the regulatory TetR, a 

constitutive luciferase and a selectable marker (Supplementary Fig. 6a). Parasites were 

transfected with this KAHRP-GFP construct and induced with aTc displayed prominent 

GFP signal closely associated with the red blood cell plasma membrane, indicating the 
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expected export and localization of this protein (Fig. 3b). Flow cytometric analysis 

comparing uninduced and aTc-induced parasites revealed an ~80% regulation in KAHRP-

GFP expression level (Supplementary Fig. 6b). A low GFP expressing but aTc non-

responsive sub-population observed during flow cytometry likely reflects heterogeneity 

arising from episomal expression20. Consistent with this interpretation, we always observe 

single peaks of GFP expression that shift homogenously in response to aTc when using 

strains in which the regulated reporter is chromosomally integrated (Supplementary Fig. 

5b,c).

Regulating native gene expression to study function

Next, we selected a second native parasite gene, the P. falciparum chloroquine resistance 

transporter (PfCRT; PF3D7_0709000), to functionally regulate its expression and illustrate 

the utility of our system. The rationale for selecting this target was two fold in that PfCRT 

is: (1) trafficked to the parasite’s digestive vacuole and has been recalcitrant to functional 

regulation by existing methods5; and (2) an important antimalarial drug resistance 

determinant and target. We reasoned that establishing a validated line in which PfCRT 

expression is dynamically regulated would create an informative proof-of-concept model 

context, and serve as a useful reagent in future drug discovery efforts centered on interfering 

with PfCRT function. In this implementation, we also sought to demonstrate an efficient and 

generalizable strategy for installing regulatory TetR aptamers within a native chromosomal 

locus. This allows for dynamic control of target gene expression in isogenic parasite lines. 

We used a zinc finger nuclease (ZFN) targeting the PfCRT locus28 to efficiently replace the 

chloroquine (Cq)-sensitive allele (PfCRT3D7) in 3D7 parasites with a resistant allele 

(PfCRTDd2)regulated by the functional aptamer (5-1.17) or sham-regulated by the non-

functional mutant (5-1.17m2)(Fig.4a). The donor plasmids (pSG594/595) used to repair the 

ZFN-induced DNA double strand breaks were designed with a recoded PfCRT exon 1 to 

limit homology to the native locus. This ensures that repair initiated within the region 

homologous to the native 5′UTR is strongly favored, and that the sequence encoding the 

aptamer is reliably introduced at the chromosomal locus. Additionally, our donor plasmids 

are recoded at the ZFN cut site to ensure that chromosomal editing is irreversible. We co-

transfected then co-selected for both ZFN and repair plasmids for two weeks, after which we 

selected only for the donor plasmid. Under these conditions, more than 50% of isolated 

clones were PCR positive for the desired integration outcome (Supplementary Fig. 7), which 

is similar to the repair efficiency reported by Straimer et al when using this ZFN pair to edit 

the PfCRT locus28. Both the aptamer and sham regulated lines grew at approximately half 

the rate of the parental 3D7 strain. This could be due to a decrease in maximum PfCRT 

expression caused by the combined effect of aptamer insertion described earlier and 

replacement of the intron-containing allele with a cDNA-based one. Indeed, previous studies 

have shown that cDNA-based PfCRTDd2 alleles are expressed at lower levels29 and that 

decreased expression is associated with reduced growth relative to parental strains with 

intron-containing alleles30. Furthermore, while lines with a PfCRTDd2 cDNA-based allele 

could readily be obtained in the GC03 genetic back ground that was derived in a cross 

between the CQ-sensitive HB3 and CQ-resistant Dd231, attempts to generate this genotype 

in the CQ-sensitive 3D7 background by single crossover recombination were 

unsuccessful32. This suggests that a significant fitness cost is associated with expressing the 
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PfCRTDd2 cDNA allele in a3D7 background, as used in our studies, and this likely also 

contributes to the growth defect in our derived lines.

An extremely valuable step in drug target identification and validation is the ability to 

directly link the effect of a compound to its putative target. We examined the suitability of 

our system for this purpose by measuring parasite growth in the presence of 

desethylchloroquine (dCq), a potent Cqmetabolite, when PfCRT expression is either 

repressed (− aTc) or induced (+ aTc). We used dCq instead of Cqas mutant PfCRT alleles 

expressed on the Cq-sensitive 3D7 background become significantly resistant to dCq but not 

Cq, likely because additional genetic and/or epigenetic changes present in inherently 

resistant strains contribute to imparting high-level resistance to both Cq and dCq32. 

Consistent with this, we detected no increased resistance to Cq in any of our parasite lines 

expressing the PfCRTDd2 allele. However, in experiments where dCq was used, and 

PfCRTDd2 expression controlled by the active aptamer, aTc increased the IC50
dCq from 

120nM (95% CI: 113-127 nM) to 324nM (95% CI: 303-345 nM), as is expected when 

increasing the expression level of this drug resistance determinant (Fig. 4b,c). No aTc-

dependent effect on dCq sensitivity was observed in the mutant aptamer line [IC50
dCq = 

348nM (-aTc); 95% CI: 305-396 nM and 347 nM (+aTc); 95% CI: 287-419 nM)]. This rules 

out a direct interaction between dCq and aTc as the basis for the observations with the 

functional aptamer. Furthermore, as the functional aptamer and its non-functional control 

differ only in their non-coding region, the identical PfCRT protein component is made in 

both cases. Therefore, the observed phenotypes are not due to the production of functionally 

distinct PfCRT protein. We note here that some PfCRTDd2 expression occurs in the 

repressed state, and this confers some basal resistance to dCQ (IC50 ~ 120 nM) compared to 

the parental line (IC50 ~ 20 nM). This is consistent with our earlier data (Fig. 1c,d) showing 

that expression is substantially reduced but not completely abolished in the repressed state.

We further illustrated the utility of the TetR-aptamer system in the drug target identification 

framework by determining the aTc-dependence of verapamil-mediated reversal of dCq 

resistance. Verapamil (VP) directly interacts with PfCRT33 to inhibit the efflux of toxic 4-

aminoquinoline drugs, such as dCq, from the digestive vacuole. Thus, when PfCRT 

expression is reduced, a lower VP concentration should be required to re-sensitize parasites 

to dCq than when PfCRT expression is increased. Consistent with this model, VP almost 

completely reversed parasite resistance to dCq when PfCRTDd2 expression in the aptamer-

regulated line was repressed [IC50
dCQ = 60 nM (-aTc, +VP); 95% CI: 56-64 nM](Fig.4c). 

However, induction of PfCRTDd2 expression significantly limited this reversal effect 

[IC50
dCQ = 167 nM (+aTc, +VP); 95% CI: 137-205 nM], and these parasites remained 

similarly resistant to dCq as un induced parasites that were not VP treated(Fig. 4c). In 

mutant aptamer lines, VP increased dCQ sensitivity, but this was aTc-independent [IC50
dCQ 

= 150 nM (-aTc, +VP); 95% CI: 123-183 versus 167 nM (+aTc, +VP); 95% CI: 137-205 

nM]. Taken together, these data support a potentially generalizable strategy for using the 

TetR-aptamer system to modulate the expression level of pre-specified molecular 

determinants to probe their mechanistic role in parasite sensitivity/resistance to candidate or 

established antimalarial drugs.
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Discussion

In summary, we have built and demonstrated a tool with broad utility for controlling gene 

expression in P. falciparum. Because this system functions reliably with no apparent 

dependence on parameters such as 5′UTR length or sequence, target gene sequence, or 

subcellular trafficking of the regulated protein, it represents a versatile addition to the 

malaria research toolset. Additionally, unlike ribozyme-based systems where only the RNA 

component can be engineered to improve functionality, our system provides the opportunity 

to engineer both the RNA element and TetR protein component34 to extend and improve 

regulatory behavior. Lastly, given that our system is based on fundamental principles of 

eukaryotic translational regulation, we envision that it will be broadly applicable and easily 

adaptable to other pathogenic organisms for which robust tools for inducible gene 

expression are currently lacking.

Methods

Molecular cloning

Cloning was performed by standard restriction/ligation, yeast homologous recombination, or 

Gibson assembly methods as described15 Unless otherwise noted, enzymes were from New 

England Biolabs and reagents were from Sigma-Aldrich, Research Products International, 

GoldBio Technology, or Alfa Aesar. PCR amplification of parasite DNA was performed 

either directly on infected red blood cells (diluted 1:50 into the reaction) or on purified DNA 

templates using Hemo Klen Taq mixed 15:1 (v:v) with PfuTurbo (Agilent). Plasmid DNA 

was prepared for transfection using Maxi Columns (Epoch Life Science) or the Xtra Midi 

Kit (Clontech).

Plasmid DNA sequences and sources

GenBank files for the constructs used in this study are provided as supplementary files. 

FLuc is wild-type firefly luciferase DNA carrying the K549E mutation for cytosolic 

targeting in yeast35. Green fluorescent protein is GFPmut236, cloned from pFGNr (Malaria 

Research and Reference Reagent Resource Center, MR4; www.mr4.org).

P. falciparum culture and transfection

Parasites were grown in human erythrocytes at 2% hematocrit under 5% O2 and 5% CO2 in 

RPMI1640 media supplemented with 5 g/L Albumax II (Life Technologies), 2 g/L 

NaHCO325 mM HEPES-K pH 7.4, 1 mM hypoxanthine and 50 mg/L gentamicin. 

Transfections used 25-75 µg of each plasmid per 200 µL packed RBC, adjusted to 50% 

hematocrit, and were performed by the spontaneous DNA uptake method37. Electroporation 

was performed on a Bio-Rad Gene Pulser II with 8 square-wave pulses of 365 V for 1 ms, 

separated by 100 ms. Transfected parasites were selected with 2.5 mg/L Blasticidin S, 5 nM 

WR9920 (Jacobus Pharmaceuticals) and/or 250 mg/L G418 beginning 4 days after 

transfection. In the case of Bxb1-mediated integration, no selection was applied on the 

integrase-expressing plasmid. All chromosomally-modified strains were confirmed by 

diagnostic PCR and sequencing of these products.
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Luciferase measurement

Dual measurement of FLuc and coelenterazine-utilizing luciferases was performed either 

with the Dual Luciferase Assay (Promega) or with homemade reagents as described13. 

Single measurement of GLucSDEL was performed by adding one volume of sample to ten 

volumes of assay buffer (0.5× phosphate-buffered saline, 0.025% Nonidet P-40, 1 µg/mL 

coelenterazine). Luciferase intensity was measured on a GloMax 20/20 luminometer (Turner 

Biosystems) or a Spectramax L plate reader (Molecular Devices). Minimum signals 

obtained using transient and stably transfected lines were ≥ 5-fold and ≥103-fold above 

background, respectively, and within instrumentation linear response ranges.

Flow cytometry

Late-stage infected red blood cells were enriched with a MACS LD column 

(MiltenyiBiotec) and stained for nucleic acid content with 1 µM SYTO 61 (Life 

Technologies) before analysis on an Accuri C6 flow cytometer (BD Biosciences). GFP was 

analyzed in FL1-H and SYTO 61 in FL4-H. Parasites were gated on high FL4 intensity to 

eliminate contaminating uninfected RBCs. Addition of aTc to either uninfected or non-

fluorescent infected red blood cells had no effect on FL1-H intensity.

GFP ELISA

Late-stage infected red blood cells were enriched with a MACS LD column 

(MiltenyiBiotec) and red blood cell membranes were lysed with 0.5 g/L saponin in PBS. 

Parasites were washed repeatedly with PBS to remove visibly detectable hemoglobin and 

stored at −80°C. As hemoglobin-depleted parasite fractions were analyzed, KAHRP-

targeted GFP was not analyzed by this method. Parasite lysates were prepared and GFP 

content was analyzed with the GFP ELISA kit (Abcam ab117992). Wells were loaded with 

equal amounts of total extracted protein as determined by BCA protein assay (Thermo 

Scientific). GFP− 3D7 parasites were used as a background control and to establish that the 

inclusion of aTc did not affect background signal intensity.

Sample preparation for immunofluorescent microscopy

Late-stage infected red blood cells were prepared by a method modified from Gallagher et 

al.38 Cells were pelleted and resuspended in fixation solution (PBS + 4% formaldehyde + 

4% glutaraldehyde) at 0.2% hematocrit. Fixation solution was prepared fresh from reagents 

in methanol-free ampules. Cells were immediately spotted onto polyethyleneimine-coated 

glass slides and incubated at room temperature for 30 min. An Immunopen (EMD 

Biosciences) was used to contain the cell suspension in a small droplet. Attached cells were 

washed with PBS and permeablized by incubating in 1% Triton X-100 in PBS for 10 min. 

Cells were then washed with PBS and blocked/quenched with 3% bovine serum albumin 

and 150 mM glycine in PBS for 1 hr. Cells were probed with mouse monoclonal anti-GFP 

(12A6, 1:25) and rabbit anti-ACP (1:500) in 3% BSA in PBS at 4 °C overnight, washed with 

PBS, and probed with CF488A-conjugated donkey anti-mouse (Biotium 20014-1, 1:1000) 

and CF647-conjugated goat anti-rabbit (Biotium 20282-1, 1:1000) for 1 hr at room 

temperature in the dark. Slides were washed with PBS and a #1.5 coverslip was mounted 

with ProLong Gold and DAPI (Life Technologies) followed by incubation in the dark for at 
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least 12 h before sealing and imaging. The GFP monoclonal antibody 12A6, developed by P. 

J. Sanchez, K. J. Daniels, and D. R. Soll, was obtained from the Developmental Studies 

Hybridoma Bank, under the auspices of the NICHD and maintained by The University of 

Iowa, Department of Biology, Iowa City, IA 52242.

Sample preparation for live fluorescence microscopy

Late-stage infected red blood cell cultures were resuspended in Albumax-free growth media 

and attached to polyethyleneimine-coated glass-bottom dishes (MatTek) before staining for 

30 min with 2 µg/mL Hoechst 33342 (Life Technologies), washing, and resuspension in 

Opti-Klear imaging buffer (Marker Gene Technologies). For mitochondrial staining, 

cultures were incubated at 37 °C for 15 min in growth media containing 25 nM Mito 

Tracker Deep Red FM (Life Technologies) before attachment.

Fluorescence microscopy

Imaging was performed on a Zeiss Axio Observer microcope with a 100× objective. For 

each field, a 30-image Z-stack was deconvolved with Huygens Essential software (SVI). 

Maximum intensity Z-projections, false coloring, and image merging were performed with 

Image J software39.

Quantitative PCR

qPCR was performed as described13 with Prime Time 5′ nuclease assays (Integrated DNA 

Technologies). P. falciparum RNA was extracted directly from late-stage infected red blood 

cells with Trizol (Life Technologies) and purified with an RN easy kit (Qiagen). cDNA was 

prepared with SuperScript III reverse transcriptase (Life Technologies). PF3D7_1331700 

(glutamine-tRNA ligase) was used as a housekeeping reference gene. Primer and probe 

sequences are listed in Supplementary Table 2.

ZFN-mediated editing of the PfCRT locus

Parasites were co-transfected with ZFN-expressing plasmid (expressing blasticidin 

resistance) and a donor vector (expressing WR99210 resistance). Four days after 

transfection, cultures were selected with 2.5 mg/L blasticidin and 2.5 nM WR99210 for 2 

weeks, at which point blasticidin selection was removed. During transfection and routine 

culturing, parasites were always maintained in the presence of 0.4 µM aTc. ATc was only 

removed as needed for specific experiments. Proper repair of the PfCRT locus with aptamer 

integration was confirmed by PCR in bulk culture and after cloning by limiting dilution. 

Greater than 50% of the clones isolated were PCR-positive for the integration event.

Drug toxicity assays

Parasite growth in the presence or absence of antimalarial drugs was monitored with the 

Gaussia luciferase reporter GLucSDEL. The full-length Gaussia luciferase (human codon-

optimized, New England Biolabs) was fused at its C terminus to the endoplasmic retention 

signal peptide SDEL, yielding extremely high coelenterazine-dependent luciferase reporter 

activity in P. falciparum. The high activity and stability of GLucSDEL allows monitoring of 

luciferase activity in the culture supernatant. For drug toxicity assays, synchronous ring-
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stage cultures were seeded in 96-well plates at 0.5% hematocrit and ~0.5% parasitemia. 

Serial dilutions of desethylchloroquine (Santa Cruz Biotech) were added to a final 

concentration of 0 or 19.5–5000 nM and cultures were incubated for 96 h. When applicable, 

verapamil (Enzo Life Sciences) was used at 0.8 µM. Plates were briefly centrifuged and 20 

µL of culture supernatant was assayed for Gaussia luciferase activity as described above. 

Each experiment was performed in triplicate, and the positions of each condition (different 

strains and aTc induction conditions) were systematically varied to eliminate position bias. 

Luciferase-null background signal (from strain 3D7) was subtracted and luciferase 

intensities were normalized to the no drug conditions. IC50 values and 95% confidence 

intervals were determined by nonlinear regression with Prism software (GraphPad).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

ACKNOWLEDGEMENTS

We thank David A. Fidock (Columbia University) for generously sharing PfCRT zinc finger nuclease and repair 
donor plasmids, and Sean T. Prigge (Johns Hopkins University Bloomberg School of Public Health) for antibodies 
to acyl-carrier protein (ACP). This work was funded by the National Institutes of Health Director’s New Innovator 
Award (1DP2OD007124, J.C.N.); a grant from the Bill and Melinda Gates Foundation through the Grand 
Challenges Explorations initiative (OPP1069759, J.C.N.); the National Institute of Environmental Health Sciences 
Predoctoral Training Grant (5-T32-ES007020, S.J.G.); NIGMS Biotechnology Training Grant 5-T32-GM08334 
(J.C.W.); Siebel Scholars Foundation Award (S.J.G.); and MIT startup funds.

REFERENCES

1. Baum J, et al. Molecular genetics and comparative genomics reveal RNAi is not functional in 
malaria parasites. Nucleic Acids Res. 2009; 37:3788–3798. [PubMed: 19380379] 

2. Collins CR, et al. Robust inducible Cre recombinase activity in the human malaria parasite 
Plasmodium falciparum enables efficient gene deletion within a single asexual erythrocytic growth 
cycle. Mol. Microbiol. 2013; 88:687–701. [PubMed: 23489321] 

3. Meissner M, et al. Tetracycline analogue-regulated transgene expression in Plasmodium falciparum 
blood stages using Toxoplasma gondii transactivators. Proc. Natl. Acad. Sci. U.S.A. 2005; 
102:2980–2985. [PubMed: 15710888] 

4. Pino P, et al. A tetracycline-repressible transactivator system to study essential genes in malaria 
parasites. Cell Host & Microbe. 2012; 12:824–834. [PubMed: 23245327] 

5. Ehlgen F, Pham JS, de Koning-Ward T, Cowman AF, Ralph SA. Investigation of the Plasmodium 
falciparum food vacuole through inducible expression of the chloroquine resistance transporter 
(PfCRT). PLoS ONE. 2012; 7:e38781. [PubMed: 22719945] 

6. Armstrong CM, Armstrong CM, Goldberg DE, Goldberg DE. An FKBP destabilization domain 
modulates protein levels in Plasmodium falciparum. Nat. Methods. 2007; 4:1007–1009. [PubMed: 
17994030] 

7. Dvorin JD, et al. A plant-like kinase in Plasmodium falciparum regulates parasite egress from 
erythrocytes. Science. 2010; 328:910–912. [PubMed: 20466936] 

8. Bender A, van Dooren GG, Ralph SA, McFadden GI, Schneider G. Properties and prediction of 
mitochondrial transit peptides from Plasmodium falciparum. Mol. Biochem. Parasitol. 2003; 
132:59–66. [PubMed: 14599665] 

9. Foth BJ, et al. Dissecting apicoplast targeting in the malaria parasite Plasmodium falciparum. 
Science. 2003; 299:705–708. [PubMed: 12560551] 

Goldfless et al. Page 10

Nat Commun. Author manuscript; available in PMC 2015 May 05.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



10. Woodcroft BJ, McMillan PJ, Dekiwadia C, Tilley L, Ralph SA. Determination of protein 
subcellular localization in apicomplexan parasites. Trends Parasitol. 2012; 28:546–554. [PubMed: 
22995720] 

11. Maier AG, et al. Exported proteins required for virulence and rigidity of Plasmodium falciparum -
infected human erythrocytes. Cell. 2008; 134:48–61. [PubMed: 18614010] 

12. Prommana P, et al. Inducible knockdown of Plasmodium gene expression using the glmS 
ribozyme. PLoS ONE. 2013; 8:e73783. [PubMed: 24023691] 

13. Goldfless SJ, Belmont BJ, de Paz AM, Liu JF, Niles JC. Direct and specific chemical control of 
eukaryotic translation with a synthetic RNA-protein interaction. Nucleic Acids Res. 2012; 40:e64. 
[PubMed: 22275521] 

14. Jackson KE, et al. Protein translation in Plasmodium parasites. Trends Parasitol. 2011; 27:467–
476. [PubMed: 21741312] 

15. Wagner JC, et al. An integrated strategy for efficient vector construction and multi-gene expression 
in Plasmodium falciparum. Malaria J. 2013; 12:373.

16. Bozdech Z, et al. The transcriptome of the intraerythrocytic developmental cycle of Plasmodium 
falciparum. PLoS Biol. 2003; 1:85–100.

17. Le Roch KG, et al. Discovery of gene function by expression profiling of the malaria parasite life 
cycle. Science. 2003; 301:1503–1508. [PubMed: 12893887] 

18. Younis I, et al. Rapid-response splicing reporter screens identify differential regulators of 
constitutive and alternative splicing. Molecular and Cellular Biology. 2010; 30:1718–1728. 
[PubMed: 20123975] 

19. Adjalley SH, et al. Quantitative assessment of Plasmodium falciparum sexual development reveals 
potent transmission-blocking activity by methylene blue. Proc. Natl. Acad. Sci. U.S.A. 2011; 
108:E1214–E1223. [PubMed: 22042867] 

20. Nkrumah LJ, et al. Efficient site-specific integration in Plasmodium falciparum chromosomes 
mediated by mycobacteriophage Bxb1 integrase. Nat. Methods. 2006; 3:615–621. [PubMed: 
16862136] 

21. Waller RF, Reed MB, Cowman AF, McFadden GI. Protein trafficking to the plastid of 
Plasmodium falciparum is via the secretory pathway. EMBO J. 2000; 19:1794–1802. [PubMed: 
10775264] 

22. Sato S, Rangachari K, Wilson RJM. Targeting GFP to the malarial mitochondrion. Mol. Biochem. 
Parasitol. 2003; 130:155–158. [PubMed: 12946854] 

23. Hiller NL, et al. A host-targeting signal in virulence proteins reveals a secretome in malarial 
infection. Science. 2004; 306:1934–1937. [PubMed: 15591203] 

24. Marti M, Good RT, Rug M, Knuepfer E, Cowman AF. Targeting malaria virulence and remodeling 
proteins to the host erythrocyte. Science. 2004; 306:1930–1933. [PubMed: 15591202] 

25. Dixon MWA, et al. Genetic ablation of a Maurer's cleft protein prevents assembly of the 
Plasmodium falciparum virulence complex. Mol. Microbiol. 2011; 81:982–993. [PubMed: 
21696460] 

26. Wickham ME, et al. Trafficking and assembly of the cytoadherence complex in Plasmodium 
falciparum -infected human erythrocytes. EMBO J. 2001; 20:5636–5649. [PubMed: 11598007] 

27. Iwanaga S, Kato T, Kaneko I, Yuda M. Centromere plasmid: a new genetic tool for the study of 
Plasmodium falciparum. PLoS ONE. 2012; 7:e33326. [PubMed: 22479383] 

28. Straimer J, et al. Site-specific genome editing in Plasmodium falciparum using engineered zinc-
finger nucleases. Nat. Methods. 2012; 9:993–998. [PubMed: 22922501] 

29. Sidhu AB, Verdier-Pinard D, Fidock DA. Chloroquine resistance in Plasmodium falciparum 
malaria parasites conferred by pfcrt mutations. Science. 2002; 298:210–213. [PubMed: 12364805] 

30. Waller KL, et al. Chloroquine resistance modulated in vitro by expression levels of the 
Plasmodium falciparum chloroquine resistance transporter. J. Biol. Chem. 2003; 278:33593–
33601. [PubMed: 12813054] 

31. Wellems TE, Walker-Jonah A, Panton LJ. Genetic mapping of the chloroquine-resistance locus on 
Plasmodium falciparum chromosome 7. Proc Natl Acad Sci U S A. 1991; 88:3382–3386. 
[PubMed: 1673031] 

Goldfless et al. Page 11

Nat Commun. Author manuscript; available in PMC 2015 May 05.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



32. Valderramos SG, et al. Identification of a mutant PfCRT-mediated chloroquine tolerance 
phenotype in Plasmodium falciparum. PLoS Pathogens. 2010; 6:e1000887. [PubMed: 20485514] 

33. Martin RE, et al. Chloroquine transport via the malaria parasite's chloroquine resistance 
transporter. Science. 2009; 325:1680–1682. [PubMed: 19779197] 

34. Belmont BJ, Niles JC. Inducible control of subcellular RNA localization using a synthetic protein-
RNA aptamer interaction. PLoS ONE. 2012; 7:e46868. [PubMed: 23056498] 

35. Distel B, et al. The carboxyl-terminal tripeptide serine-lysine-leucine of firefly luciferase is 
necessary but not sufficient for peroxisomal import in yeast. The New Biologist. 1992; 4:157–165. 
[PubMed: 1554690] 

36. Cormack BP, Valdivia RH, Falkow S. FACS-optimized mutants of the green fluorescent protein 
(GFP). Gene. 1996; 173:33–38. [PubMed: 8707053] 

37. Deitsch K, Driskill C, Wellems T. Transformation of malaria parasites by the spontaneous uptake 
and expression of DNA from human erythrocytes. Nucleic Acids Res. 2001; 29:850–853. 
[PubMed: 11160909] 

38. Gallagher JR, Matthews KA, Prigge ST. Plasmodium falciparum apicoplast transit peptides are 
unstructured in vitro and during apicoplast import. Traffic (Copenhagen, Denmark). 2011; 
12:1124–1138.

39. Schneider CA, Rasband WS, Eliceiri KW. NIH Image to ImageJ: 25 years of image analysis. Nat. 
Methods. 2012; 9:671–675. [PubMed: 22930834] 

Goldfless et al. Page 12

Nat Commun. Author manuscript; available in PMC 2015 May 05.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 1. Aptamer5-1.17enables aTc-dependent control of reporter gene expression
(a) A schematic of aTc- and TetR- dependent regulation of translation is shown. (b) Plasmid 

vectors pSG75 (CaM 5′UTR with 5-1.17), pSG76 (CaM 5′UTR with 5-1.17m2) and 

pSG216 (hsp86 5′UTR with 5-1.17) were used to screen for aTc-dependent regulation in 

transient transfections. Vectors pSG231 (5-1.17) and pSG252(5-1.17m2) were used for the 

same purposes in stable episomal parasite lines. Either a functional (5-1.17) or mutated 

(5-1.17m2) aptamer was placed upstream of the FLuc reporter gene to regulate its 

expression. The sequence and placement context for the 5-1.17 aptamer is shown as an in 

set. The capitalized ‘A’s are mutated to ‘T’s to produce the non-functional 5-1.17m2. Bases 

in italics indicate a short upstream start/stop, and those in bold indicate a productive start 

codon that is kept in frame with the downstream coding sequence (CDS) of interest. A CDS 

may carry its own initiation codon, or not, with no effect on expression or regulation by aTc. 

Renilla luciferase (RLuc) is expressed constitutively, and serves as a reference during 

quantitation. (c) During transient screening in the TetR-expressing parasite clone B10, 

5-1.17, but not 5-1.17m2, results in aTc-inducible FLuc expression. Values are expressed as 

FLuc/RLuc (− aTc) normalized to FLuc/RLuc(+ aTc). (d) Similarly, in stable episomal 

lines, 5-1.17 but not 5-1.17m2, resulted in aTc-inducible FLuc expression. (e) Insertion of 
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aptamer5-1.17 down stream of the CaM 5′UTR reduces its maximal FLuc expression about 

two fold. All data are expressed as the mean ± s.d. of 2-4 independent experiments. An 

asterisk (*) denotes a p-value ≤ 0.002 determined by two-tailed unpaired t-test.

Goldfless et al. Page 14

Nat Commun. Author manuscript; available in PMC 2015 May 05.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 2. Rapid induction and washout kinetics are achieved using the TetR-aptamer system in 
P. falciparum
Dd2 strain parasites harboring pSG231 (5-1.17/FLuc) or pSG252 (5-1.17m2/FLuc) were 

tightly synchronized. aTc (1 µM) was added, removed, or maintained at the time indicated 

by the arrowhead. Dual luciferase measurements were made at various time points, and 

relative FLuc/RLuc ratios were determined. (a) aTc status was adjusted in late stage 

parasites just prior to reinvasion, and FLuc/RLuc monitored over the next IDC; (b) aTc 

status was adjusted at early ring stage, and FLuc/RLuc monitored within that IDC. Values 

represent the mean ± s.d. of three biological replicates. An asterisk (*) denotes a p-value ≤ 

0.001 as determined by two-way ANOVA. N.S. = not significant.
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Figure 3. Aptamer controlled target proteins are properly trafficked to various subcellular 
compartments
(a) Immunofluorescence and live fluorescence imaging of strains expressing 

chromosomally-integrated GFP reporters bearing an N-terminal targeting peptide (Api = 

apicoplast-targeted; Mito = mitochondrion-targeted; PEXEL = protein export to erythrocyte 

cytoplasm). ACP = acyl carrier protein, used as an apicoplast marker. (b) Live fluorescence 

imaging of aptamer-regulated KAHRP-GFP fusion expressed from an episomal construct 

bearing the P. falciparum centromere-derived element pfCEN5-1.5.
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Figure 4. Aptamer-mediated functional regulation of PfCRT expression from its native 
chromosomal context
(a) Schematic of modified PfCRT locus to simultaneously introduce 5-1.17 (clone H2) and 

5-1.17m2 (clone C1) and the regulatory TetR protein. (b) Aptamer 5-1.17 regulates the 

sensitivity of clone H2 to dCQ, while the non-functional 5-1.17m2 does not modulate the 

sensitivity of clone C1 to dCQ. (c) Verapamil (VP), which reverses resistance to dCQ 

through a direct interaction with PfCRT, is less effective when PfCRT expression is induced 

versus repressed. Clone E3 (control) has a wild-type PfCRT3D7 locus and a constitutive 

GLucSDEL reporter integrated at the cg6 locus, and exhibits an aTc- and verapamil- 

independent IC50
dCQ = 20 nM (95% CI: 15-26 nM) Data were collected in biological 

triplicates. Mean values and error bars representing 95% confidence intervals are reported.
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