13 research outputs found

    Economic Ideas and Institutional Change: Evidence from Soviet Economic Discourse 1987-1991

    Full text link

    Investigations of the Mars Upper Atmosphere with ExoMars Trace Gas Orbiter

    Get PDF
    The Martian mesosphere and thermosphere, the region above about 60 km, is not the primary target of the ExoMars 2016 mission but its Trace Gas Orbiter (TGO) can explore it and address many interesting issues, either in-situ during the aerobraking period or remotely during the regular mission. In the aerobraking phase TGO peeks into thermospheric densities and temperatures, in a broad range of latitudes and during a long continuous period. TGO carries two instruments designed for the detection of trace species, NOMAD and ACS, which will use the solar occultation technique. Their regular sounding at the terminator up to very high altitudes in many different molecular bands will represent the first time that an extensive and precise dataset of densities and hopefully temperatures are obtained at those altitudes and local times on Mars. But there are additional capabilities in TGO for studying the upper atmosphere of Mars, and we review them briefly. Our simulations suggest that airglow emissions from the UV to the IR might be observed outside the terminator. If eventually confirmed from orbit, they would supply new information about atmospheric dynamics and variability. However, their optimal exploitation requires a special spacecraft pointing, currently not considered in the regular operations but feasible in our opinion. We discuss the synergy between the TGO instruments, specially the wide spectral range achieved by combining them. We also encourage coordinated operations with other Mars-observing missions capable of supplying simultaneous measurements of its upper atmosphere

    Aillikites and Alkali Ultramafic Lamprophyres of the Beloziminsky Alkaline Ultrabasic-Carbonatite Massif: Possible Origin and Relations with Ore Deposits

    No full text
    The 650–621 Ma plume which impinged beneath the Siberian craton during the breakup of Rodinia caused the formation of several alkaline carbonatite massifs in craton margins of the Angara rift system. The Beloziminsky alkaline ultramafic carbonatite massif (BZM) in the Urik-Iya graben includes alnöites, phlogopite carbonatites and aillikites. The Yuzhnaya pipe (YuP) ~ 645 Ma and the 640–621 Ma aillikites in BZM, dated by 40Ar/39Ar, contain xenoliths of carbonated sulfide-bearing dunites, xenocrysts of olivines, Cr-diopsides, Cr-phlogopites, Cr-spinels (P ~ 4–2 GPa and T ~ 800–1250 °C) and xenocrysts of augites with elevated HFSE, U, Th. Al-augites and kaersutites fractionated from T ~ 1100–700 °C along the 90 mW/m2 geotherm. Higher T trend for Al-Ti augite, pargasites, Ti-biotites series (0.4–1.5 GPa) relate to intermediate magma chambers near the Moho and in the crust. Silicate xenocrysts show Zr-Hf, Ta-Nb peaks and correspond to carbonate-rich magma fractionation that possibly supplied the massif. Aillikites contain olivines, rare Cr-diopsides and oxides. The serpentinites are barren, fragments of ore-bearing Phl carbonatites contain perovskites, Ta-niobates, zircons, thorites, polymetallic sulphides and Ta-Mn-Nb-rich magnetites, ilmenites and Ta-Nb oxides. The aillikites are divided by bulk rock and trace elements into seven groups with varying HFSE and LILE due to different incorporation of carbonatites and related rocks. Apatites and perovskites reveal remarkably high LREE levels. Aillikites were generated by 1%–0.5% melting of the highly metasomatized mantle with ilmenite, perovskite apatite, sulfides and mica, enriched by subduction-related melts and fluids rich in LILE and HFSE. Additional silicate crystal fractionation increased the trace element concentrations. The carbonate-silicate P-bearing magmas may have produced the concentration of the ore components and HFSE in the essentially carbonatitic melts after liquid immiscibility in the final stage. The mechanical enrichment of aillikites in ore and trace element-bearing minerals was due to mixture with captured solid carbonatites after intrusion in the massif

    An Approximating Mathematical Model of Interaction Between a Freely Rotating Disk and Soil

    Full text link
    A generalized mathematical model of disk interaction with soil was built under general assumptions regarding the mode of the disk knife motion in soil, namely, in a mode of slippage, skidding or rolling without slippage and skidding. Previously constructed models follow from it as particular cases at certain values of parameters. However, because of computational complexity of this model for the case of a freely rotating disk knife consisting in the need for a preliminary numerical solution of a transcendental equation to determine the mode of disk motion, the generalized mathematical model has not found wide application. Therefore, an analytical two-dimensional approximation of a generalized model of disk interaction with soil which is a new model of approximation type was constructed on the basis of a computer experiment using the least squares method.An explicit expression was obtained for the kinematic parameter of a freely rotating disk knife which determines its mode of motion. It was established that this parameter is a rational function of relative depth of the disk penetration and the dimensionless dynamic coefficient characterizing soil properties. Also, explicit expressions were obtained for the projections of the resultant soil reaction forces acting on the blade of the disk knife and its side faces depending on the data of dimensionless parameters. It has been established that the horizontal component of the reaction which determines tractive resistance of the disk is also a rational function of the relative penetration depth and the dimensionless dynamic coefficient. It was established that the magnitude of the kinematic parameter significantly affects the magnitude and direction of the resultant soil reactions to the disk. The expressions obtained make it possible to significantly simplify experiments to determine the resultant soil reaction forces to a freely rotating disk knife and reduce their required number. These expressions make it possible to carry out strength calculations of soil-cultivating working tools with disks and determine their optimal parameters according to the strength criteria and the minimum specific energy consumption with accuracy sufficient for engineering practice. Adequacy of the obtained expressions was confirmed by comparison with experimental data of the disk knife dynamometr

    Managing Wound Healing with a High-Risk Patient: A Case Report

    No full text
    Wound healing is a complex, multi-step process. This process begins immediately after skin damage. The outcome of wound healing depends on the quality of each stage of this process: a normal or pathological scar. Violation of wound healing entails a decrease in the function of scar tissue as well as aesthetic dissatisfaction with the patient. This problem is especially important in aesthetic surgery. Patients who have come for beauty feel frustration, obtaining pathological scars. We have been dealing with the problem of wound healing after plastic surgery for about 10 years. Our approach includes the assessment of the risk of pathological wound healing and the treatment of high-risk patients. The risk assessment includes historical data on wound healing, signs of connective tissue dysfunction (especially patients with connective tissue dysplasia), and genetic polymorphisms of genes responsible for the structure of the components of the extracellular matrix of the skin. In the future, patients with a high risk of pathological scarring can be prescribed treatment after surgery. This article presents a clinical case in which we demonstrate our approach

    The Role of Extracellular Matrix in Skin Wound Healing

    No full text
    Impaired wound healing is one of the unsolved problems of modern medicine, affecting patients’ quality of life and causing serious economic losses. Impaired wound healing can manifest itself in the form of chronic skin wounds or hypertrophic scars. Research on the biology and physiology of skin wound healing disorders is actively continuing, but, unfortunately, a single understanding has not been developed. The attention of clinicians to the biological and physiological aspects of wound healing in the skin is necessary for the search for new and effective methods of prevention and treatment of its consequences. In addition, it is important to update knowledge about genetic and non-genetic factors predisposing to impaired wound healing in order to identify risk levels and develop personalized strategies for managing such patients. Wound healing is a very complex process involving several overlapping stages and involving many factors. This thematic review focuses on the extracellular matrix of the skin, in particular its role in wound healing. The authors analyzed the results of fundamental research in recent years, finding promising potential for their transition into real clinical practice
    corecore