15 research outputs found

    Identification of CD8+ cytotoxic T lymphocyte epitopes from porcine reproductive and respiratory syndrome virus matrix protein in BALB/c mice

    Get PDF
    Twenty-seven nanopeptides derived from the matrix (M) protein of porcine reproductive and respiratory syndrome virus (PRRSV) were screened for their ability to elicit a recall interferon-γ (IFN-γ) response from the splenocytes of BALB/c mice following DNA vaccination and a booster vaccination with recombinant vaccinia virus rWR-PRRSV-M. We identified two peptides (amino acid residues K93FITSRCRL and F57GYMTFVHF) as CD8+ cytotoxic T lymphocyte (CTL) epitopes. These peptides elicited significant numbers of IFN-γ secreting cells, compared with other M nonapeptides and one irrelevant nonapeptide. Bioinformatics analysis showed that the former is an H-2Kd-restricted CTL epitope, and the latter is an H-2Dd-restricted CTL epitope. Multiple amino acid sequence alignment among different PRRSV M sequences submitted to GenBank indicated that these two CTL epitopes are strongly conserved, and they should therefore be considered for further research on the mechanisms of cellular immune responses to PRRSV

    A common variant near TGFBR3 is associated with primary open angle glaucoma

    Get PDF
    This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/ licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited.Primary open angle glaucoma (POAG), a major cause of blindness worldwide, is a complex disease with a significant genetic contribution.We performed Exome Array (Illumina) analysis on 3504 POAG cases and 9746 controls with replication of the most significant findings in 9173 POAG cases and 26 780 controls across 18 collections of Asian, African and European descent. Apart from confirming strong evidence of association at CDKN2B-AS1 (rs2157719 [G], odds ratio [OR] = 0.71, P = 2.81 × 10−33), we observed one SNP showing significant association to POAG (CDC7–TGFBR3 rs1192415, ORG-allele = 1.13, Pmeta = 1.60 × 10−8). This particular SNP has previously been shown to be strongly associated with optic disc area and vertical cup-to-disc ratio, which are regarded as glaucoma-related quantitative traits. Our study now extends this by directly implicating it in POAG disease pathogenesis

    A common variant near TGFBR3 is associated with primary open angle glaucoma

    Get PDF
    Primary open angle glaucoma (POAG), a major cause of blindness worldwide, is a complex disease with a significant genetic contribution. We performed Exome Array (Illumina) analysis on 3504 POAG cases and 9746 controls with replication of the most significant findings in 9173 POAG cases and 26 780 controls across 18 collections of Asian, African and European descent. Apart from confirming strong evidence of association at CDKN2B-AS1 (rs2157719 [G], odds ratio [OR] = 0.71, P = 2.81 × 10−33), we observed one SNP showing significant association to POAG (CDC7–TGFBR3 rs1192415, ORG-allele = 1.13, Pmeta = 1.60 × 10−8). This particular SNP has previously been shown to be strongly associated with optic disc area and vertical cup-to-disc ratio, which are regarded as glaucoma-related quantitative traits. Our study now extends this by directly implicating it in POAG disease pathogenesis

    Downloaded from

    Get PDF
    Abstract Primary open angle glaucoma (POAG), a major cause of blindness worldwide, is a complex disease with a significant genetic contribution. We performed Exome Array ), we observed one SNP showing significant association to POAG (CDC7-TGFBR3 rs1192415, OR G-allele = 1.13, P meta = 1.60 × 10 −8 ). This particular SNP has previously been shown to be strongly associated with optic disc area and vertical cup-to-disc ratio, which are regarded as glaucoma-related quantitative traits. Our study now extends this by directly implicating it in POAG disease pathogenesis

    Multi-Stage Cortical Plasticity Induced by Visual Contrast Learning

    No full text
    Perceptual learning, the improved sensitivity via repetitive practice, is a universal phenomenon in vision and its neural mechanisms remain controversial. A central question is which stage of processing is changed after training. To answer this question, we measured the contrast response functions and electroencephalography (EEG) before and after ten daily sessions of contrast detection training. Behavioral results showed that training substantially improved visual acuity and contrast sensitivity. The learning effect was significant at the trained condition and partially transferred to control conditions. Event-related potential (ERP) results showed that training reduced the latency in both early and late ERPs at the trained condition. Specifically, contrast-gain-related changes were observed in the latency of P1, N1-P2 complex, and N2, which reflects neural changes across the early, middle, and high-level sensory stages. Meanwhile, response-gain-related changes were found in the latency of N2, which indicates stimulus-independent effect in higher-level stages. In sum, our findings indicate that learning leads to changes across different processing stages and the extent of learning and transfer may depend on the specific stage of information processing

    Dynamic Prediction of Mechanical Thrombectomy Outcome for Acute Ischemic Stroke Patients Using Machine Learning

    No full text
    The unfavorable outcome of acute ischemic stroke (AIS) with large vessel occlusion (LVO) is related to clinical factors at multiple time points. However, predictive models used for dynamically predicting unfavorable outcomes using clinically relevant preoperative and postoperative time point variables have not been developed. Our goal was to develop a machine learning (ML) model for the dynamic prediction of unfavorable outcomes. We retrospectively reviewed patients with AIS who underwent a consecutive mechanical thrombectomy (MT) from three centers in China between January 2014 and December 2018. Based on the eXtreme gradient boosting (XGBoost) algorithm, we used clinical characteristics on admission (“Admission” Model) and additional variables regarding intraoperative management and the postoperative National Institute of Health stroke scale (NIHSS) score (“24-Hour” Model, “3-Day” Model and “Discharge” Model). The outcome was an unfavorable outcome at the three-month mark (modified Rankin scale, mRS 3–6: unfavorable). The area under the receiver operating characteristic curve and Brier scores were the main evaluating indexes. The unfavorable outcome at the three-month mark was observed in 156 (62.0%) of 238 patients. These four models had a high accuracy in the range of 75.0% to 87.5% and had a good discrimination with AUC in the range of 0.824 to 0.945 on the testing set. The Brier scores of the four models ranged from 0.122 to 0.083 and showed a good predictive ability on the testing set. This is the first dynamic, preoperative and postoperative predictive model constructed for AIS patients who underwent MT, which is more accurate than the previous prediction model. The preoperative model could be used to predict the clinical outcome before MT and support the decision to perform MT, and the postoperative models would further improve the predictive accuracy of the clinical outcome after MT and timely adjust therapeutic strategies

    Size Effects of Platinum Colloid Particles on the Structure and CO Oxidation Properties of Supported Pt/Fe<sub>2</sub>O<sub>3</sub> Catalysts

    No full text
    Three supported Pt/Fe<sub>2</sub>O<sub>3</sub> catalysts were prepared by depositing platinum colloids with discrete particle sizes onto the surface of Fe­(OH)<sub>3</sub> powders, which were then calcined at an elevated temperature. Pt nanoparticle colloids with mean diameters of 1.1, 1.9, or 2.7 nm were synthesized in order to investigate the effects of particle size on the structure and CO oxidation properties of these Pt/Fe<sub>2</sub>O<sub>3</sub> catalysts. All Pt/Fe<sub>2</sub>O<sub>3</sub> catalysts demonstrated activity in low-temperature CO oxidation, with the sample containing Pt nanoparticles with a mean diameter of 1.9 nm (designated Pt/Fe<sub>2</sub>O<sub>3</sub>-b) exhibiting relatively higher catalytic activity. Compared with the other two catalysts, Pt/Fe<sub>2</sub>O<sub>3</sub>-b exhibited an increased ability to activate oxygen and maintain the stability of Pt species, correlating with its higher catalytic activity. The results of various characterization techniques revealed that the mean particle size of the Pt nanoparticles could influence the chemical states of Pt species and the strength of metal–support interactions of the Pt/Fe<sub>2</sub>O<sub>3</sub> catalysts. It was observed that the metal–support interactions in Pt/Fe<sub>2</sub>O<sub>3</sub> catalysts were able to adjust the redox properties and the O<sub>2</sub>-activation abilities of the catalysts. Finally, it is proposed that the interacting Pt and Fe species located at the Pt–FeO<sub><i>x</i></sub> interface are the primary active sites for the activation of CO and O<sub>2</sub>, respectively
    corecore