54 research outputs found
Demographic, seasonal, and spatial differences in acute myocardial infarction admissions to hospital in Melbourne Australia
<p>Abstract</p> <p>Background</p> <p>Seasonal patterns in cardiac disease in the northern hemisphere are well described in the literature. More recently age and gender differences in cardiac mortality and to a lesser extent morbidity have been presented. To date spatial differences between the seasonal patterns of cardiac disease has not been presented. Literature relating to seasonal patterns in cardiac disease in the southern hemisphere and in Australia in particular is scarce. The aim of this paper is to describe the seasonal, age, gender, and spatial patterns of cardiac disease in Melbourne Australia by using acute myocardial infarction admissions to hospital as a marker of cardiac disease.</p> <p>Results</p> <p>There were 33,165 Acute Myocardial Infarction (AMI) admissions over 2186 consecutive days. There is a seasonal pattern in AMI admissions with increased rates during the colder months. The peak month is July. The admissions rate is greater for males than for females, although this difference decreases with advancing age. The maximal AMI season for males extends from April to November. The difference between months of peak and minimum admissions was 33.7%. Increased female AMI admissions occur from May to November, with a variation between peak and minimum of 23.1%. Maps of seasonal AMI admissions demonstrate spatial differences. Analysis using Global and Local Moran's I showed increased spatial clustering during the warmer months. The Bivariate Moran's I statistic indicated a weaker relationship between AMI and age during the warmer months.</p> <p>Conclusion</p> <p>There are two distinct seasons with increased admissions during the colder part of the year. Males present a stronger seasonal pattern than females. There are spatial differences in AMI admissions throughout the year that cannot be explained by the age structure of the population. The seasonal difference in AMI admissions warrants further investigation. This includes detailing the prevalence of cardiac disease in the community and examining issues of social and environmental justice.</p
The effects of summer temperature, age and socioeconomic circumstance on Acute Myocardial Infarction admissions in Melbourne, Australia
<p>Abstract</p> <p>Background</p> <p>Published literature detailing the effects of heatwaves on human health is readily available. However literature describing the effects of heat on morbidity is less plentiful, as is research describing events in the southern hemisphere and Australia in particular. To identify susceptible populations and direct public health responses research must move beyond description of the temperature morbidity relationship to include social and spatial risk factors. This paper presents a spatial and socio-demographic picture of the effects of hot weather on persons admitted to hospital with acute myocardial infarction (AMI) in Melbourne.</p> <p>Results</p> <p>In this study, the use of a spatial and socio-economic perspective has identified two groups within the population that have an increased 'risk' of AMI admissions to hospital during hot weather. AMI increases during hot weather were only identified in the most disadvantaged and the least disadvantaged areas. Districts with higher AMI admissions rates during hot weather also had larger proportions of older residents. Age provided some explanation for the spatial distribution of AMI admissions on single hot days whereas socio-economic circumstance did not. During short periods (3-days) of hot weather, age explained the spatial distribution of AMI admissions slightly better than socioeconomic circumstance.</p> <p>Conclusions</p> <p>This study has demonstrated that both age and socioeconomic inequality contribute to AMI admissions to hospital in Melbourne during hot weather. By using socioeconomic circumstance to define quintiles, differences in AMI admissions were quantified and demographic differences in AMI admissions were described. Including disease specificity into climate-health research methods is necessary to identify climate-sensitive diseases and highlight the burden of climate-sensitive disease in the community. Cardiac disease is a major cause of death and disability and identifying cardiac-specific climate thresholds and the spatio-demographic characteristics of vulnerable groups within populations is an important step towards preventative health care by informing public health officials and providing a guide for an early heat-health warning system. This information is especially important under current climatic conditions and for assessing the future impact of climate change.</p
The Air-temperature Response to Green/blue-infrastructure Evaluation Tool (TARGET v1.0) : an efficient and user-friendly model of city cooling
The adverse impacts of urban heat and global climate change are leading policymakers to consider green and blue infrastructure (GBI) for heat mitigation benefits. Though many models exist to evaluate the cooling impacts of GBI, their complexity and computational demand leaves most of them largely inaccessible to those without specialist expertise and computing facilities. Here a new model called The Air-temperature Response to Green/blue-infrastructure Evaluation Tool (TARGET) is presented. TARGET is designed to be efficient and easy to use, with fewer user-defined parameters and less model input data required than other urban climate models. TARGET can be used to model average street-level air temperature at canyon-to-block scales (e.g. 100 m resolution), meaning it can be used to assess temperature impacts of suburb-to-city-scale GBI proposals. The model aims to balance realistic representation of physical processes and computation efficiency. An evaluation against two different datasets shows that TARGET can reproduce the magnitude and patterns of both air temperature and surface temperature within suburban environments. To demonstrate the utility of the model for planners and policymakers, the results from two precinct-scale heat mitigation scenarios are presented. TARGET is available to the public, and ongoing development, including a graphical user interface, is planned for future work
Sources and pathways of dust during the Australian 'Millennium Drought' decade
From the late 1990s to mid-2010, Australia was affected by a prolonged period of drought, the “Millennium Drought,” during which numerous severe dust storms crossed the continent. We inspect this period to produce the first continental-scale climatology of air-parcel trajectories that is specific to dust and use it to gain new insights into dust transport dynamics over the eastern half of Australia. The analysis is based upon dust arrival times from airport meteorological observations made at nine mostly coastal cities for 2000–2009. The Hybrid Single-Particle Lagrangian Integrated Trajectory model was used to calculate 1.26 million backward trajectories from receptor cities, with only those trajectories associated with a dust storm observation considered in the analysis of dust transport. To tie dust trajectories from receptors to likely emission sources, trajectories were linked to six known major dust source regions in and around the Lake Eyre Basin. The Lake Eyre North ephemeral lake system, alluvial-dominated Channel Country, and agricultural Mallee-Riverina regions emerge as important sources for the period, providing variable contributions to different parts of the seaboard as controlled by different front-related wind systems. Our study also provides new detail regarding dust pathways from continental Australia. For the Millennium Drought we identify that the broadly established Southeast Dust Path may be more accurately subdivided into three active pathways, driven by prefrontal northerly winds and a variation in the influence of frontal westerlies. The detail of these pathways has implications for dust delivery from specific Australian sources to different marine environments
An urban ecohydrological model to quantify the effect of vegetation on urban climate and hydrology (UT&C v1.0)
Increasing urbanization is likely to intensify the urban heat island effect, decrease outdoor thermal comfort and enhance runoff generation in cities. Urban green spaces are often proposed as a mitigation strategy to counteract these adverse effects and many recent developments of urban climate models focus on the inclusion of green and blue infrastructure to inform urban planning. However, many models still lack the ability to account for different plant types and oversimplify the interactions between the built environment, vegetation, and hydrology. In this study, we present an urban ecohydrological model, Urban Tethys-Chloris (UT&C), that combines principles of ecosystem modelling with an urban canopy scheme accounting for the biophysical and ecophysiological characteristics of roof vegetation, ground vegetation and urban trees. UT&C is a fully coupled energy and water balance model that calculates 2 m air temperature, 2 m humidity, and surface temperatures based on the infinite urban canyon approach. It further calculates all urban hydrological fluxes, including transpiration as a function of plant photosynthesis. Hence, UT&C accounts for the effects of different plant types on the urban climate and hydrology, as well as the effects of the urban environment on plant well-being and performance. UT&C performs well when compared against energy flux measurements of eddy covariance towers located in three cities in different climates (Singapore, Melbourne, Phoenix). A sensitivity analysis, performed as a proof of concept for the city of Singapore, shows a mean decrease in 2 m air temperature of 1.1 °C for fully grass covered ground, 0.2 °C for high values of leaf area index (LAI), and 0.3 °C for high values of Vc,max (an expression of photosynthetic activity). These reductions in temperature were combined with a simultaneous increase in relative humidity by 6.5 %, 2.1 %, and 1.6 %, for fully grass covered ground, high values of LAI, and high values of Vc,max, respectively. Furthermore, the increase of pervious vegetated ground is able to significantly reduce surface runoff. These results show that urban greening can lead to a decrease in urban air temperature and surface runoff, but this effect is limited in cities characterized by a hot, humid climate.ISSN:1991-962XISSN:1991-961
Connections of climate change and variability to large and extreme forest fires in southeast Australia
The 2019/20 Black Summer bushfire disaster in southeast Australia was unprecedented: the extensive area of forest burnt, the radiative power of the fires, and the extraordinary number of fires that developed into extreme pyroconvective events were all unmatched in the historical record. Australia’s hottest and driest year on record, 2019, was characterised by exceptionally dry fuel loads that primed the landscape to burn when exposed to dangerous fire weather and ignition. The combination of climate variability and long-term climate trends generated the climate extremes experienced in 2019, and the compounding effects of two or more modes of climate variability in their fire-promoting phases (as occurred in 2019) has historically increased the chances of large forest fires occurring in southeast Australia. Palaeoclimate evidence also demonstrates that fire-promoting phases of tropical Pacific and Indian ocean variability are now unusually frequent compared with natural variability in preindustrial times. Indicators of forest fire danger in southeast Australia have already emerged outside of the range of historical experience, suggesting that projections made more than a decade ago that increases in climate-driven fire risk would be detectable by 2020, have indeed eventuated. The multiple climate change contributors to fire risk in southeast Australia, as well as the observed non-linear escalation of fire extent and intensity, raise the likelihood that fire events may continue to rapidly intensify in the future. Improving local and national adaptation measures while also pursuing ambitious global climate change mitigation efforts would provide the best strategy for limiting further increases in fire risk in southeast Australia
Sustainable Urban Systems: Co-design and Framing for Transformation
Rapid urbanisation generates risks and opportunities for sustainable development. Urban policy and decision makers are challenged by the complexity of cities as social–ecological–technical systems. Consequently there is an increasing need for collaborative knowledge development that supports a whole-of-system view, and transformational change at multiple scales. Such holistic urban approaches are rare in practice. A co-design process involving researchers, practitioners and other stakeholders, has progressed such an approach in the Australian context, aiming to also contribute to international knowledge development and sharing. This process has generated three outputs: (1) a shared framework to support more systematic knowledge development and use, (2) identification of barriers that create a gap between stated urban goals and actual practice, and (3) identification of strategic focal areas to address this gap. Developing integrated strategies at broader urban scales is seen as the most pressing need. The knowledge framework adopts a systems perspective that incorporates the many urban trade-offs and synergies revealed by a systems view. Broader implications are drawn for policy and decision makers, for researchers and for a shared forward agenda
A global observational analysis to understand changes in air quality during exceptionally low anthropogenic emission
This global study, which has been coordinated by the World Meteorological Organization Global Atmospheric Watch (WMO/GAW) programme, aims to understand the behaviour of key air pollutant species during the COVID-19 pandemic period of exceptionally low emissions across the globe. We investigated the effects of the differences in both emissions and regional and local meteorology in 2020 compared with the period 2015–2019. By adopting a globally consistent approach, this comprehensive observational analysis focuses on changes in air quality in and around cities across the globe for the following air pollutants PM2.5, PM10, PMC (coarse fraction of PM), NO2, SO2, NOx, CO, O3 and the total gaseous oxidant (OX = NO2 + O3) during the pre-lockdown, partial lockdown, full lockdown and two relaxation periods spanning from January to September 2020. The analysis is based on in situ ground-based air quality observations at over 540 traffic, background and rural stations, from 63 cities and covering 25 countries over seven geographical regions of the world. Anomalies in the air pollutant concentrations (increases or decreases during 2020 periods compared to equivalent 2015–2019 periods) were calculated and the possible effects of meteorological conditions were analysed by computing anomalies from ERA5 reanalyses and local observations for these periods. We observed a positive correlation between the reductions in NO2 and NOx concentrations and peoples’ mobility for most cities. A correlation between PMC and mobility changes was also seen for some Asian and South American cities. A clear signal was not observed for other pollutants, suggesting that sources besides vehicular emissions also substantially contributed to the change in air quality. As a global and regional overview of the changes in ambient concentrations of key air quality species, we observed decreases of up to about 70% in mean NO2 and between 30% and 40% in mean PM2.5 concentrations over 2020 full lockdown compared to the same period in 2015–2019. However, PM2.5 exhibited complex signals, even within the same region, with increases in some Spanish cities, attributed mainly to the long-range transport of African dust and/or biomass burning (corroborated with the analysis of NO2/CO ratio). Some Chinese cities showed similar increases in PM2.5 during the lockdown periods, but in this case, it was likely due to secondary PM formation. Changes in O3 concentrations were highly heterogeneous, with no overall change or small increases (as in the case of Europe), and positive anomalies of 25% and 30% in East Asia and South America, respectively, with Colombia showing the largest positive anomaly of ~70%. The SO2 anomalies were negative for 2020 compared to 2015–2019 (between ~25 to 60%) for all regions. For CO, negative anomalies were observed for all regions with the largest decrease for South America of up to ~40%. The NO2/CO ratio indicated that specific sites (such as those in Spanish cities) were affected by biomass burning plumes, which outweighed the NO2 decrease due to the general reduction in mobility (ratio of ~60%). Analysis of the total oxidant (OX = NO2 + O3) showed that primary NO2 emissions at urban locations were greater than the O3 production, whereas at background sites, OX was mostly driven by the regional contributions rather than local NO2 and O3 concentrations. The present study clearly highlights the importance of meteorology and episodic contributions (e.g., from dust, domestic, agricultural biomass burning and crop fertilizing) when analysing air quality in and around cities even during large emissions reductions. There is still the need to better understand how the chemical responses of secondary pollutants to emission change under complex meteorological conditions, along with climate change and socio-economic drivers may affect future air quality. The implications for regional and global policies are also significant, as our study clearly indicates that PM2.5 concentrations would not likely meet the World Health Organization guidelines in many parts of the world, despite the drastic reductions in mobility. Consequently, revisions of air quality regulation (e.g., the Gothenburg Protocol) with more ambitious targets that are specific to the different regions of the world may well be required.Peer reviewedFinal Published versio
- …