384 research outputs found

    Long-term effects of 7-monohydroxyethylrutoside (monoHER) on DOX-induced cardiotoxicity in mice

    Get PDF
    Doxorubicin (DOX) is a potent antitumor agent for different types of cancer, but the cumulative, dose-related cardiotoxicity limits its clinical use. The incidence of abnormal cardiac function after treatment with DOX appears to increase with time. Therefore, late cardiotoxicity is—especially in young surviving patients—a major concern. The aim of this study was to evaluate in mice whether the semisynthetic flavonoid 7-monohydroxyethylrutoside (monoHER) also protected against DOX-induced cardiotoxicity after a long period of follow-up. Four groups of 6 Balb/c mice were treated weekly during 6 weeks with saline, DOX alone (4 mg/kg i.v.), DOX preceded by monoHER (500 mg/kg i.p.), or DOX preceded by monoHER followed by long-term weekly monoHER injections during the observation period of 6 months. Half of the mice treated with DOX only developed DOX-induced heart failure and died within 6 months of observation. Two mice co-treated with monoHER showed weight loss and shortness of breath, whereas one mouse was found dead in its cage known with weight loss. The group receiving DOX plus long-term repeated doses of monoHER started to lose weight. Five out of six mice in this group developed shortness of breath and died before the end of the study with symptoms of cardiac failure induced by DOX. Statistical comparison of the histological heart damage between the different experimental groups was not possible, because the animals died at different time-points in the observation period and DOX-induced cardiotoxicity progressed with time. Nevertheless, it was clear that the initial cardioprotective effect of monoHER was not prolonged during the half-year observation period. It was even suggested that addition of repeated doses of monoHER tended to aggravate DOX-induced cardiotoxicity. It cannot be excluded that the dose and frequency of monoHER administration is crucial in obtaining an optimal antioxidant activity without a pro-oxidant activity of monoHER

    Data-Driven Regionalization of Decarbonized Energy Systems for Reflecting Their Changing Topologies in Planning and Optimization

    Get PDF
    The decarbonization of energy systems has led to a fundamental change in their topologysince generation is shifted to locations with favorable renewable conditions. In planning, this changeis reflected by applying optimization models to regions within a country to optimize the distributionof generation units and to evaluate the resulting impact on the grid topology. This paper proposesa globally applicable framework to find a suitable regionalization for energy system models witha data-driven approach. Based on a global, spatially resolved database of demand, generation,and renewable profiles, hierarchical clustering with fine-tuning is performed. This regionalizationapproach is applied by modeling the resulting regions in an optimization model including asynthesized grid. In an exemplary case study, South Africa’s energy system is examined. The resultsshow that the data-driven regionalization is beneficial compared to the common approach of usingpolitical regions. Furthermore, the results of a modeled 80% decarbonization until 2045 demonstratethat the integration of renewable energy sources fundamentally changes the role of regions withinSouth Africa’s energy system. Thereby, the electricity exchange between regions is also impacted,leading to a different grid topology. Using clustered regions improves the understanding and analysisof regional transformations in the decarbonization process

    Orthopedic surgery increases atherosclerotic lesions and necrotic core area in ApoE-/- mice

    Get PDF
    Background and aims Observational studies show a peak incidence of cardiovascular events after major surgery. For example, the risk of myocardial infarction increases 25-fold early after hip replacement. The acuteness of this increased risk suggests abrupt enhancement in plaque vulnerability, which may be related to intra-plaque inflammation, thinner fibrous cap and/or necrotic core expansion. We hypothesized that acute systemic inflammation following major orthopedic surgery induces such changes. Methods ApoE−/− mice were fed a western diet for 10 weeks. Thereafter, half the mice underwent mid-shaft femur osteotomy followed by realignment with an intramedullary K-wire, to mimic major orthopedic surgery. Mice were sacrificed 5 or 15 days post-surgery (n = 22) or post-saline injection (n = 13). Serum amyloid A (SAA) was measured as a marker of systemic inflammation. Paraffin embedded slides of the aortic root were stained to measure total plaque area and to quantify fibrosis, calcification, necrotic core, and inflammatory cells. Results Surgery mice showed a pronounced elevation of serum amyloid A (SAA) and developed increased plaque and necrotic core area already at 5 days, which reached significance at 15 days (p = 0.019; p = 0.004 for plaque and necrotic core, respectively). Macrophage and lymphocyte density significantly decreased in the surgery group compared to the control group at 15 days (p = 0.037; p = 0.024, respectively). The density of neutrophils and mast cells remained unchanged. Conclusions Major orthopedic surgery in ApoE−/− mice triggers a systemic inflammatory response. Atherosclerotic plaque area is enlarged after surgery mainly due to an increase of the necrotic core. The role of intra-plaque inflammation in this response to surgical injury remains to be fully elucidated. © 2016 Elsevier Ireland Lt

    Data-Driven Regionalization of Decarbonized Energy Systems for Reflecting Their Changing Topologies in Planning and Optimization

    Get PDF
    The decarbonization of energy systems has led to a fundamental change in their topology since generation is shifted to locations with favorable renewable conditions. In planning, this change is reflected by applying optimization models to regions within a country to optimize the distribution of generation units and to evaluate the resulting impact on the grid topology. This paper proposes a globally applicable framework to find a suitable regionalization for energy system models with a data-driven approach. Based on a global, spatially resolved database of demand, generation, and renewable profiles, hierarchical clustering with fine-tuning is performed. This regionalization approach is applied by modeling the resulting regions in an optimization model including a synthesized grid. In an exemplary case study, South Africa’s energy system is examined. The results show that the data-driven regionalization is beneficial compared to the common approach of using political regions. Furthermore, the results of a modeled 80% decarbonization until 2045 demonstrate that the integration of renewable energy sources fundamentally changes the role of regions within South Africa’s energy system. Thereby, the electricity exchange between regions is also impacted, leading to a different grid topology. Using clustered regions improves the understanding and analysis of regional transformations in the decarbonization process

    Sex-specific cardiac remodeling in early and advanced stages of hypertrophic cardiomyopathy

    Get PDF
    Hypertrophic cardiomyopathy (HCM) is the most frequent genetic cardiac disease with a prevalence of 1:500 to 1:200. While most patients show obstructive HCM and a relatively stable clinical phenotype (stage II), a small group of patients progresses to end-stage HCM (stage IV) within a relatively brie

    Characteristics of Interstitial Fibrosis and Inflammatory Cell Infiltration in Right Ventricles of Systemic Sclerosis-Associated Pulmonary Arterial Hypertension

    Get PDF
    Objective. Systemic sclerosis-associated pulmonary arterial hypertension (SScPAH) has a disturbed function of the right ventricle (RV) when compared to idiopathic PAH (IPAH). Systemic sclerosis may also affect the heart. We hypothesize that RV differences may occur at the level of interstitial inflammation and—fibrosis and compared inflammatory cell infiltrate and fibrosis between the RV of SScPAH, IPAH, and healthy controls. Methods. Paraffin-embedded tissue samples of RV and left ventricle (LV) from SScPAH (n = 5) and IPAH (n = 9) patients and controls (n = 4) were picrosirius red stained for detection of interstitial fibrosis, which was quantified semiautomatically. Neutrophilic granulocytes (MPO), macrophages (CD68), and lymphocytes (CD45) were immunohistochemically stained and only interstitial leukocytes were counted. Presence of epi- or endocardial inflammation, and of perivascular or intimal fibrosis of coronary arteries was assessed semiquantitatively (0–3: absent to extensive). Results. RV's of SScPAH showed significantly more inflammatory cells than of IPAH (cells/mm2, mean ± sd MPO 11 ± 3 versus 6 ± 1; CD68 11 ± 3 versus 6 ± 1; CD45 11 ± 1 versus 5 ± 1 , P < .05) and than of controls. RV interstitial fibrosis was similar in SScPAH and IPAH (4 ± 1 versus 5 ± 1%, P = .9), and did not differ from controls (5 ± 1%, P = .8). In 4 SScPAH and 5 IPAH RV's foci of replacement fibrosis were found. No differences were found on epi- or endocardial inflammation or on perivascular or intimal fibrosis of coronary arteries. Conclusion. SScPAH RVs display denser inflammatory infiltrates than IPAH, while they do not differ with respect to interstitial fibrosis. Whether increased inflammatory status is a contributor to altered RV function in SScPAH warrants further research

    Diagnosis of sarcopenia on thoracic computed tomography and its association with postoperative survival after anatomic lung cancer resection

    Get PDF
    Computer tomography-derived skeletal muscle index normalized for height in conjunction with muscle density enables single modality-based sarcopenia assessment that accounts for all diagnostic criteria and cutoff recommendations as per the widely accepted European consensus. Yet, the standard approach to quantify skeletal musculature at the third lumbar vertebra is limited for certain patient groups, such as lung cancer patients who receive chest CT for tumor staging that does not encompass this lumbar level. As an alternative, this retrospective study assessed sarcopenia in lung cancer patients treated with curative intent at the tenth thoracic vertebral level using appropriate cutoffs. We showed that skeletal muscle index and radiation attenuation at level T10 correlate well with those at level L3 (Pearson’s R = 0.82 and 0.66, p < 0.001). During a median follow-up period of 55.7 months, sarcopenia was independently associated with worse overall (hazard ratio (HR) = 2.11, 95%-confidence interval (95%-CI) = 1.38–3.23, p < 0.001) and cancer-specific survival (HR = 2.00, 95%-CI = 1.19–3.36, p = 0.009) of lung cancer patients following anatomic resection. This study highlights feasibility to diagnose sarcopenia solely by thoracic CT in accordance with the European consensus recommendations. The straightforward methodology offers easy translation into routine clinical care and potential to improve preoperative risk stratification of lung cancer patients scheduled for surgery

    Evaluation of pliable bioresorbable, elastomeric aortic valve prostheses in sheep during 12 months post implantation

    Get PDF
    Pliable microfibrous, bioresorbable elastomeric heart valve prostheses are investigated in search of sustainable heart valve replacement. These cell-free implants recruit cells and trigger tissue formation on the valves in situ. Our aim is to investigate the behaviour of these heart valve prostheses when exposed to the high-pressure circulation. We conducted a 12-month follow-up study in sheep to evaluate the in vivo functionality and neo-tissue formation of these valves in the aortic position. All valves remained free from endocarditis, thrombotic complications and macroscopic calcifications. Cell colonisation in the leaflets was mainly restricted to the hinge area, while resorption of synthetic fibers was limited. Most valves were pliable and structurally intact (10/15), however, other valves (5/15) showed cusp thickening, retraction or holes in the leaflets. Further research is needed to assess whether in-situ heart valve tissue engineering in the aortic position is possible or whether non-resorbable synthetic pliable prostheses are preferred.</p

    C4b-Binding Protein Is Present in Affected Areas of Myocardial Infarction during the Acute Inflammatory Phase and Covers a Larger Area than C3

    Get PDF
    BACKGROUND: During myocardial infarction reduced blood flow in the heart muscle results in cell death. These dying/dead cells have been reported to bind several plasma proteins such as IgM and C-reactive protein (CRP). In the present study we investigated whether fluid-phase complement inhibitor C4b-binding protein (C4BP) would also bind to the infarcted heart tissue. METHODS AND FINDINGS: Initial studies using immunohistochemistry on tissue arrays for several cardiovascular disorders indicated that C4BP can be found in heart tissue in several cardiac diseases but that it is most abundantly found in acute myocardial infarction (AMI). This condition was studied in more detail by analyzing the time window and extent of C4BP positivity. The binding of C4BP correlates to the same locations as C3b, a marker known to correlate to the patterns of IgM and CRP staining. Based on criteria that describe the time after infarction we were able to pinpoint that C4BP binding is a relatively early marker of tissue damage in myocardial infarction with a peak of binding between 12 hours and 5 days subsequent to AMI, the phase in which infiltration of neutrophilic granulocytes in the heart is the most extensive. CONCLUSIONS: C4BP, an important fluid-phase inhibitor of the classical and lectin pathway of complement activation binds to jeopardized cardiomyocytes early after AMI and co-localizes to other well known markers such as C3b
    corecore