9 research outputs found

    Interpreting and reporting ⁴⁰Ar/³⁹Ar geochronologic data

    Get PDF
    The ⁴⁰Ar/³⁹Ar dating method is among the most versatile of geochronometers, having the potential to date a broad variety of K-bearing materials spanning from the time of Earth’s formation into the historical realm. Measurements using modern noble-gas mass spectrometers are now producing ⁴⁰Ar/³⁹Ar dates with analytical uncertainties of ∼0.1%, thereby providing precise time constraints for a wide range of geologic and extraterrestrial processes. Analyses of increasingly smaller subsamples have revealed age dispersion in many materials, including some minerals used as neutron fluence monitors. Accordingly, interpretive strategies are evolving to address observed dispersion in dates from a single sample. Moreover, inferring a geologically meaningful “age” from a measured “date” or set of dates is dependent on the geological problem being addressed and the salient assumptions associated with each set of data. We highlight requirements for collateral information that will better constrain the interpretation of ⁴⁰Ar/³⁹Ar data sets, including those associated with single-crystal fusion analyses, incremental heating experiments, and in situ analyses of microsampled domains. To ensure the utility and viability of published results, we emphasize previous recommendations for reporting ⁴⁰Ar/³⁹Ar data and the related essential metadata, with the amendment that data conform to evolving standards of being findable, accessible, interoperable, and reusable (FAIR) by both humans and computers. Our examples provide guidance for the presentation and interpretation of ⁴⁰Ar/³⁹Ar dates to maximize their interdisciplinary usage, reproducibility, and longevity

    Mediterranean winter rainfall in phase with African monsoons during the past 1.36 million years

    Get PDF
    Mediterranean climates are characterized by strong seasonal contrasts between dry summers and wet winters. Changes in winter rainfall are critical for regional socioeconomic development, but are difficult to simulate accurately1 and reconstruct on Quaternary timescales. This is partly because regional hydroclimate records that cover multiple glacial–interglacial cycles2,3 with different orbital geometries, global ice volume and atmospheric greenhouse gas concentrations are scarce. Moreover, the underlying mechanisms of change and their persistence remain unexplored. Here we show that, over the past 1.36 million years, wet winters in the northcentral Mediterranean tend to occur with high contrasts in local, seasonal insolation and a vigorous African summer monsoon. Our proxy time series from Lake Ohrid on the Balkan Peninsula, together with a 784,000-year transient climate model hindcast, suggest that increased sea surface temperatures amplify local cyclone development and refuel North Atlantic low-pressure systems that enter the Mediterranean during phases of low continental ice volume and high concentrations of atmospheric greenhouse gases. A comparison with modern reanalysis data shows that current drivers of the amount of rainfall in the Mediterranean share some similarities to those that drive the reconstructed increases in precipitation. Our data cover multiple insolation maxima and are therefore an important benchmark for testing climate model performance

    Evidence for a large magnitude eruption from Campi Flegrei caldera (Italy) at 29 ka

    No full text
    The 40 ka caldera-forming eruption of Campi Flegrei (Italy) is the largest known eruption in Europe during the last 200 kyr, but little is known about other large eruptions at the volcano prior to a more recent caldera-forming event at 15 ka. At 29 ka a widespread volcanic ash layer, termed the Y-3 tephra, covered >150,000 km2 of the Mediterranean. The glass compositions of the layer are consistent with Campi Flegrei being the source but no prominent proximal equivalent in the appropriate chrono-stratigraphic position had been previously identified. Here we report new glass chemistry data and 40Ar/39Ar ages (29.3 ± 0.7 ka [2σ]) that reveal the near-source Y-3 eruption deposit in a sequence at Ponti Rossi and a nearby borehole (S-19) in Naples. The dispersal and thickness of the deposits associated with this eruption, herein named the Masseria del Monte Tuff, were simulated using a tephra sedimentation model. The model indicates that ~16 km3 DRE (dense rock equivalent) of the magma erupted was deposited as fall. This volume and the areal distribution suggest the Masseria del Monte Tuff was a magnitude 6.6 eruption (corresponding to VEI 6), similar to the 15 ka caldera-forming Neapolitan Yellow Tuff (M6.8) eruption at Campi Flegrei. However, the lack of coarse, thick, traceable, near-vent deposit suggests peculiar eruption dynamics. Our reconstruction and modelling of the eruption show the fundamental role that distal tephrostratigraphy can play in constraining the scale and tempo of past activity, especially at highly productive volcanoe
    corecore