3,571 research outputs found

    A Design Kit for Mobile Device-Based Interaction Techniques

    Get PDF
    Beside designing the graphical interface of mobile applications, mobile phones and their built-in sensors enable various possibilities to engage with digital content in a physical, device-based manner that move beyond the screen content. So-called mobile device-based interactions are characterized by device movements and positions as well as user actions in real space. So far, there is only little guidance available for novice designers and developers to ideate and design new solutions for specic individual or collaborative use cases. Hence, the potential for designing mobile-based interactions is seldom fully exploited. To address this issue, we propose a design kit for mobile device-based interaction techniques following a morphological approach. Overall, the kit comprises seven dimensions with several elements that can be easily combined with each other to form an interaction technique by selecting at least one entry of each dimension. The design kit can be used to support designers in exploring novel mobile interaction techniques to specic interaction problems in the ideation phase of the design process but also in the analysis of existing device-based interaction solutions

    Discourse or dialogue? Habermas, the Bakhtin Circle, and the question of concrete utterances

    Get PDF
    This is the author's accepted manuscript. The final publication is available at Springer via the link below.This article argues that the Bakhtin Circle presents a more realistic theory of concrete dialogue than the theory of discourse elaborated by Habermas. The Bakhtin Circle places speech within the “concrete whole utterance” and by this phrase they mean that the study of everyday language should be analyzed through the mediations of historical social systems such as capitalism. These mediations are also characterized by a determinate set of contradictions—the capital-labor contradiction in capitalism, for example—that are reproduced in unique ways in more concrete forms of life (the state, education, religion, culture, and so on). Utterances always dialectically refract these processes and as such are internal concrete moments, or concrete social forms, of them. Moreover, new and unrepeatable dialogic events arise in these concrete social forms in order to overcome and understand the constant dialectical flux of social life. But this theory of dialogue is different from that expounded by Habermas, who tends to explore speech acts by reproducing a dualism between repeatable and universal “abstract” discursive processes (commonly known as the ideal speech situation) and empirical uses of discourse. These critical points against Habermas are developed by focusing on six main areas: sentences and utterances; the lifeworld and background language; active versus passive understandings of language; validity claims; obligation and relevance in language; and dialectical universalism

    Heat dissipation in atomic-scale junctions

    Full text link
    Atomic and single-molecule junctions represent the ultimate limit to the miniaturization of electrical circuits. They are also ideal platforms to test quantum transport theories that are required to describe charge and energy transfer in novel functional nanodevices. Recent work has successfully probed electric and thermoelectric phenomena in atomic-scale junctions. However, heat dissipation and transport in atomic-scale devices remain poorly characterized due to experimental challenges. Here, using custom-fabricated scanning probes with integrated nanoscale thermocouples, we show that heat dissipation in the electrodes of molecular junctions, whose transmission characteristics are strongly dependent on energy, is asymmetric, i.e. unequal and dependent on both the bias polarity and the identity of majority charge carriers (electrons vs. holes). In contrast, atomic junctions whose transmission characteristics show weak energy dependence do not exhibit appreciable asymmetry. Our results unambiguously relate the electronic transmission characteristics of atomic-scale junctions to their heat dissipation properties establishing a framework for understanding heat dissipation in a range of mesoscopic systems where transport is elastic. We anticipate that the techniques established here will enable the study of Peltier effects at the atomic scale, a field that has been barely explored experimentally despite interesting theoretical predictions. Furthermore, the experimental advances described here are also expected to enable the study of heat transport in atomic and molecular junctions, which is an important and challenging scientific and technological goal that has remained elusive.Comment: supporting information available in the journal web site or upon reques

    Robotic assistants for universal access

    Get PDF
    Much research is now focusing on how technology is moving away from the traditional computer to a range of smart devices in smart environments, the so-called Internet of Things. With this increase in computing power and decrease in form factor, we are approaching the possibility of a new generation of robotic assistants able to perform a range of tasks and activities to support all kinds of users. However, history shows that unless care is taken early in the design process, the users who may stand to benefit the most from such assistance may inadvertently be excluded from it. This paper examines some of those historical missteps and examines possible ways forward to ensure that the next generation robots support the principles of universal access

    Individual variation in levels of haptoglobin-related protein in children from Gabon

    Get PDF
    Background: Haptoglobin related protein (Hpr) is a key component of trypanosome lytic factors (TLF), a subset of highdensity lipoproteins (HDL) that form the first line of human defence against African trypanosomes. Hpr, like haptoglobin (Hp) can bind to hemoglobin (Hb) and it is the Hpr-Hb complexes which bind to these parasites allowing uptake of TLF. This unique form of innate immunity is primate-specific. To date, there have been no population studies of plasma levels of Hpr, particularly in relation to hemolysis and a high prevalence of ahaptoglobinemia as found in malaria endemic areas. Methods and Principal Findings: We developed a specific enzyme-linked immunosorbent assay to measure levels of plasma Hpr in Gabonese children sampled during a period of seasonal malaria transmission when acute phase responses (APR), malaria infection and associated hemolysis were prevalent. Median Hpr concentration was 0.28 mg/ml (range 0.03-1.1). This was 5-fold higher than that found in Caucasian children (0.049 mg/ml, range 0.002-0.26) with no evidence of an APR. A general linear model was used to investigate associations between Hpr levels, host polymorphisms, parasitological factors and the acute phase proteins, Hp, C-reactive protein (CRP) and albumin. Levels of Hpr were associated with Hp genotype, decreased with age and were higher in females. Hpr concentration was strongly correlated with that of Hp, but not CRP

    Defining acceptable interaction for universal access

    Get PDF
    Many new assistive input systems developed to meet the needs of users with functional impairments fail to make it out of the research laboratory and into regular use by the intended users. This paper examines some of the reasons for this and focuses particular on whether the developers of such systems are focusing on the correct metrics for evaluating the functional attributes of the new input technologies. In particular, the paper focuses on the issue of benchmarking new assistive input systems against a baseline measure of interaction rate that takes allowance of factors such as input success/recognition rate, error rate, correction effort and input time. By addressing each of these measures, a more complete understanding of whether an input system is functionally acceptable can be obtained

    Experiencing sense of place in virtual and physical Avebury.

    Get PDF
    This paper discusses the findings from a project to construct a simulation of Avebury henge, a Late Neolithic/ Early Bronze Age monument in SW Britain, in a 3D, virtual world environment. The aims of the study were to explore the archaeological research and interpretation necessary to plan and construct such a simulation in an interactive, online environment, to identify which aspects of visualisation and soundscape design appear to have the greatest impact upon users’ sense of place in the virtual simulation and to explore the experiences of a small group of users in the virtual simulation and the effects of those experiences upon their sense of place at the physical site. The findings from this project demonstrated that in undertaking a simulation of an ancient site, a core set of sources need to be selected to create the main parts of the simulation. There is often much debate in archaeological literature regarding the way in which archaeological findings are interpreted, and a different virtual Avebury would be constructed if different interpretations had been chosen. Any simulation of an ancient site should therefore clearly recognise and state the basis upon which it has been designed. The evaluation showed that responses to virtual environments, and the resulting effect upon responses to physical environments, are complex and personal, resulting in a range of experiences and perceptions, suggesting that the range of users’ experiences might be a more significant issue than attempting to find any general consensus on user reactions to simulated ancient sites

    Genomic-Bioinformatic Analysis of Transcripts Enriched in the Third-Stage Larva of the Parasitic Nematode Ascaris suum

    Get PDF
    Differential transcription in Ascaris suum was investigated using a genomic-bioinformatic approach. A cDNA archive enriched for molecules in the infective third-stage larva (L3) of A. suum was constructed by suppressive-subtractive hybridization (SSH), and a subset of cDNAs from 3075 clones subjected to microarray analysis using cDNA probes derived from RNA from different developmental stages of A. suum. The cDNAs (n = 498) shown by microarray analysis to be enriched in the L3 were sequenced and subjected to bioinformatic analyses using a semi-automated pipeline (ESTExplorer). Using gene ontology (GO), 235 of these molecules were assigned to ‘biological process’ (n = 68), ‘cellular component’ (n = 50), or ‘molecular function’ (n = 117). Of the 91 clusters assembled, 56 molecules (61.5%) had homologues/orthologues in the free-living nematodes Caenorhabditis elegans and C. briggsae and/or other organisms, whereas 35 (38.5%) had no significant similarity to any sequences available in current gene databases. Transcripts encoding protein kinases, protein phosphatases (and their precursors), and enolases were abundantly represented in the L3 of A. suum, as were molecules involved in cellular processes, such as ubiquitination and proteasome function, gene transcription, protein–protein interactions, and function. In silico analyses inferred the C. elegans orthologues/homologues (n = 50) to be involved in apoptosis and insulin signaling (2%), ATP synthesis (2%), carbon metabolism (6%), fatty acid biosynthesis (2%), gap junction (2%), glucose metabolism (6%), or porphyrin metabolism (2%), although 34 (68%) of them could not be mapped to a specific metabolic pathway. Small numbers of these 50 molecules were predicted to be secreted (10%), anchored (2%), and/or transmembrane (12%) proteins. Functionally, 17 (34%) of them were predicted to be associated with (non-wild-type) RNAi phenotypes in C. elegans, the majority being embryonic lethality (Emb) (13 types; 58.8%), larval arrest (Lva) (23.5%) and larval lethality (Lvl) (47%). A genetic interaction network was predicted for these 17 C. elegans orthologues, revealing highly significant interactions for nine molecules associated with embryonic and larval development (66.9%), information storage and processing (5.1%), cellular processing and signaling (15.2%), metabolism (6.1%), and unknown function (6.7%). The potential roles of these molecules in development are discussed in relation to the known roles of their homologues/orthologues in C. elegans and some other nematodes. The results of the present study provide a basis for future functional genomic studies to elucidate molecular aspects governing larval developmental processes in A. suum and/or the transition to parasitism

    Experimental observation of topological Fermi arcs in type-II Weyl semimetal MoTe2

    Full text link
    Weyl semimetal is a new quantum state of matter [1-12] hosting the condensed matter physics counterpart of relativisticWeyl fermion [13] originally introduced in high energy physics. The Weyl semimetal realized in the TaAs class features multiple Fermi arcs arising from topological surface states [10, 11, 14-16] and exhibits novel quantum phenomena, e.g., chiral anomaly induced negative mag-netoresistance [17-19] and possibly emergent supersymmetry [20]. Recently it was proposed theoretically that a new type (type-II) of Weyl fermion [21], which does not have counterpart in high energy physics due to the breaking of Lorentz invariance, can emerge as topologically-protected touching between electron and hole pockets. Here, we report direct spectroscopic evidence of topological Fermi arcs in the predicted type-II Weyl semimetal MoTe2 [22-24]. The topological surface states are confirmed by directly observing the surface states using bulk-and surface-sensitive angle-resolved photoemission spectroscopy (ARPES), and the quasi-particle interference (QPI) pattern between the two putative Fermi arcs in scanning tunneling microscopy (STM). Our work establishes MoTe2 as the first experimental realization of type-II Weyl semimetal, and opens up new opportunities for probing novel phenomena such as exotic magneto-transport [21] in type-II Weyl semimetals.Comment: submitted on 01/29/2016. Nature Physics, in press. Spectroscopic evidence of the Fermi arcs from two complementary surface sensitive probes - ARPES and STS. A comparison of the calculated band structure for T_d and 1T' phase to identify the topological Fermi arcs in the T_d phase is also included in the supplementary informatio
    corecore