697 research outputs found

    Microsatellite instability and defects in mismatch repair proteins: a new aetiology for Sertoli cell‐only syndrome

    Get PDF
    Microsatellite instability is characteristic of certain types of cancer, and is present in rodents lacking specific DNA mismatch repair proteins. These azoospermic mice exhibit spermatogenic defects similar to some human testicular failure patients. Therefore, we hypothesized that microsatellite instability due to deficiencies in mismatch repair genes might be an unrecognized aetiology of human testicular failure. Because these azoospermic patients are candidates for testicular sperm extraction and ICSI, transmission of mismatch repair defects to the offspring is possible. Seven microsatellite loci were analysed for instability in specimens from 41 testicular failure patients and 20 controls. Blood and testicular DNA were extracted from patient and control specimens, and amplified by PCR targeting seven microsatellite loci. DNA fragment length was analysed with an ABI Prism 310 Genotyping Machine and GeneScan software. Immunohistochemistry was performed on paraffinized testis biopsy sections and cultured testicular fibroblasts from each patient to determine if expression of the mismatch repair proteins hMSH2 and hMLH1 was normal in both somatic and germline cells. Results demonstrate that microsatellite instability and DNA mismatch repair protein defects are present in some azoospermic men, predominantly in Sertoli cell‐only patients (P < 0.01 and P < 0.05 respectively). This provides evidence of a previously unrecognized aetiology of testicular failure that may be associated with cancer predispositio

    Cholesterol-lowering properties of Ganoderma lucidum in vitro, ex vivo, and in hamsters and minipigs

    Get PDF
    INTRODUCTION: There has been renewed interest in mushroom medicinal properties. We studied cholesterol lowering properties of Ganoderma lucidum (Gl), a renowned medicinal species. RESULTS: Organic fractions containing oxygenated lanosterol derivatives inhibited cholesterol synthesis in T9A4 hepatocytes. In hamsters, 5% Gl did not effect LDL; but decreased total cholesterol (TC) 9.8%, and HDL 11.2%. Gl (2.5 and 5%) had effects on several fecal neutral sterols and bile acids. Both Gl doses reduced hepatic microsomal ex-vivo HMG-CoA reductase activity. In minipigs, 2.5 Gl decreased TC, LDL- and HDL cholesterol 20, 27, and 18%, respectively (P < 0.05); increased fecal cholestanol and coprostanol; and decreased cholate. CONCLUSIONS: Overall, Gl has potential to reduce LDL cholesterol in vivo through various mechanisms. Next steps are to: fully characterize bioactive components in lipid soluble/insoluble fractions; evaluate bioactivity of isolated fractions; and examine human cholesterol lowering properties. Innovative new cholesterol-lowering foods and medicines containing Gl are envisioned

    <Reviews> Dr. G. Sieben: Der Substanzwert der Unternehmung

    Get PDF
    The processing of pain undergoes several changes in aging that affect sensory nociceptive fibers and the endogenous neuronal inhibitory systems. So far, it is not completely clear whether age-induced modifications are associated with an increase or decrease in pain perception. In this study, we assessed the impact of age on inflammatory nociception in mice and the role of the hormonal inhibitory systems in this context. We investigated the nociceptive behavior of 12-month-old versus 6–8-week-old mice in two behavioral models of inflammatory nociception. Levels of TRP channels, and cortisol as well as cortisol targets, were measured by qPCR, ELISA, and Western blot in the differently aged mice. We observed an age-related reduction in nociceptive behavior during inflammation as well as a higher level of cortisol in the spinal cord of aged mice compared to young mice, while TRP channels were not reduced. Among potential cortisol targets, the NF-ÎșB inhibitor protein alpha (IÎșBα) was increased, which might contribute to inhibition of NF-ÎșB and a decreased expression and activity of the inducible nitric oxide synthase (iNOS). In conclusion, our results reveal a reduced nociceptive response in aged mice, which might be at least partially mediated by an augmented inflammation-induced increase in the hormonal inhibitory system involving cortisol

    Computing the shortest elementary flux modes in genome-scale metabolic networks

    Get PDF
    This article is available open access through the publisher’s website through the link below. Copyright @ The Author 2009.Motivation: Elementary flux modes (EFMs) represent a key concept to analyze metabolic networks from a pathway-oriented perspective. In spite of considerable work in this field, the computation of the full set of elementary flux modes in large-scale metabolic networks still constitutes a challenging issue due to its underlying combinatorial complexity. Results: In this article, we illustrate that the full set of EFMs can be enumerated in increasing order of number of reactions via integer linear programming. In this light, we present a novel procedure to efficiently determine the K-shortest EFMs in large-scale metabolic networks. Our method was applied to find the K-shortest EFMs that produce lysine in the genome-scale metabolic networks of Escherichia coli and Corynebacterium glutamicum. A detailed analysis of the biological significance of the K-shortest EFMs was conducted, finding that glucose catabolism, ammonium assimilation, lysine anabolism and cofactor balancing were correctly predicted. The work presented here represents an important step forward in the analysis and computation of EFMs for large-scale metabolic networks, where traditional methods fail for networks of even moderate size. Contact: [email protected] Supplementary information: Supplementary data are available at Bioinformatics online (http://bioinformatics.oxfordjournals.org/cgi/content/full/btp564/DC1).Fundação Calouste Gulbenkian, Fundação para a CiĂȘncia e a Tecnologia (FCT) and Siemens SA Portugal

    Fish-derived low molecular weight components modify bronchial epithelial barrier properties and release of pro-inflammatory cytokines

    Get PDF
    The prevalence of fish allergy among fish-processing workers is higher than in the general population, possibly due to sensitization via inhalation and higher exposure. However, the response of the bronchial epithelium to fish allergens has never been explored. Parvalbumins (PVs) from bony fish are major sensitizers in fish allergy, while cartilaginous fish and their PVs are considered less allergenic. Increasing evidence demonstrates that components other than proteins from the allergen source, such as low molecular weight components smaller than 3 kDa (LMC) from pollen, may act as adjuvants during allergic sensitization. We investigated the response of bronchial epithelial cells to PVs and to LMC from Atlantic cod, a bony fish, and gummy shark, a cartilaginous fish. Polarized monolayers of the bronchial epithelial cell line 16HBE14owere stimulated apically with fish PVs and/-or the corresponding fish LMC. Barrier integrity, transport of PVs across the monolayers and release of mediators were monitored. Intact PVs from both the bony and the cartilaginous fish were rapidly internalized by the cells and transported to the basolateral side of the monolayers. The PVs did not disrupt the epithelial barrier integrity nor did they modify the release of proinflammatory cytokines. In contrast, LMC from both fish species modified the physical and immunological properties of the epithelial barrier and the responses differed between bony and cartilaginous fish. While the barrier integrity was lowered by cod LMC 24 h after cell stimulation, it was increased by up to 2.3-fold by shark LMC. Furthermore, LMC from both fish species increased basolateral and apical release of IL 6 and IL-8, while CCL2 release was increased by cod but not by shark LMC. In summary, our study demonstrated the rapid transport of PVs across the epithelium which may result in their availability to antigen presenting cells required for allergic sensitization. Moreover, different cell responses to LMC derived from bony versus cartilaginous fish were observed, which may play a role in different allergenic potentials of these two fish classes

    Critical and direct involvement of the CD23 stalk region in IgE binding

    Get PDF
    BackgroundThe low-affinity receptor for IgE, FcΔRII (CD23), contributes to allergic inflammation through allergen presentation to T cells, regulation of IgE responses, and enhancement of transepithelial allergen migration.ObjectiveWe sought to investigate the interaction between CD23, chimeric monoclonal human IgE, and the corresponding birch pollen allergen Bet v 1 at a molecular level.MethodsWe expressed 4 CD23 variants. One variant comprised the full extracellular portion of CD23, including the stalk and head domain; 1 variant was identical with the first, except for an amino acid exchange in the stalk region abolishing the N-linked glycosylation site; and 2 variants represented the head domain, 1 complete and 1 truncated. The 4 CD23 variants were purified as monomeric and structurally folded proteins, as demonstrated by gel filtration and circular dichroism. By using a human IgE mAb, the corresponding allergen Bet v 1, and a panel of antibodies specific for peptides spanning the CD23 surface, both binding and inhibition assays and negative stain electron microscopy were performed.ResultsA hitherto unknown IgE-binding site was mapped on the stalk region of CD23, and the non–N-glycosylated monomeric version of CD23 was superior in IgE binding compared with glycosylated CD23. Furthermore, we demonstrated that a therapeutic anti-IgE antibody, omalizumab, which inhibits IgE binding to FcΔRI, also inhibited IgE binding to CD23.ConclusionOur results provide a new model for the CD23-IgE interaction. We show that the stalk region of CD23 is crucially involved in IgE binding and that the interaction can be blocked by the therapeutic anti-IgE antibody omalizumab

    Behavioral evidence for the differential regulation of p-p38 MAPK and p-NF-ÎșB in rats with trigeminal neuropathic pain

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>We investigated the differential regulation of p-p38 MAPK or p-NF-ÎșB in male Sprague-Dawley rats with inferior alveolar nerve injury resulting from mal-positioned dental implants. For this purpose, we characterized the temporal expression of p-p38 MAPK or p-NF-ÎșB in the medullary dorsal horn and examined changes in nociceptive behavior after a blockade of p-p38 MAPK or p-NF-ÎșB pathways in rats with trigeminal neuropathic pain.</p> <p>Results</p> <p>Under anesthesia, the left lower second molar was extracted and replaced with a mini dental implant to intentionally injure the inferior alveolar nerve. Western and immunofluorescence analysis revealed that p-p38 MAPK is upregulated in microglia following nerve injury and that this expression peaked on postoperative day (POD) 3 through 7. However, the activation of p-NF-ÎșB in astrocyte peaked on POD 7 through 21. The intracisternal administration of SB203580 (1 or 10 ÎŒg), a p38 MAPK inhibitor, on POD 3 but not on POD 21 markedly inhibits mechanical allodynia and the p-p38 MAPK expression. However, the intracisternal administration of SN50 (0.2 or 2 ng), an NF-ÎșB inhibitor, on POD 21 but not on POD 3 attenuates mechanical allodynia and p-NF-ÎșB expression. Dexamethasone (25 mg/kg) decreases not only the activation of p38 MAPK but also that of NF-ÎșB on POD 7.</p> <p>Conclusions</p> <p>These results suggest that early expression of p-p38 MAPK in the microglia and late induction of p-NF-ÎșB in astrocyte play an important role in trigeminal neuropathic pain and that a blockade of p-p38 MAPK at an early stage and p-NF-ÎșB at a late stage might be a potential therapeutic strategy for treatment of trigeminal neuropathic pain.</p

    Disorder-Induced Phase Control in Superfluid Fermi-Bose Mixtures

    Full text link
    We consider a mixture of a superfluid Fermi gas of ultracold atoms and a Bose-Einstein condensate of molecules possessing a continuous U(1) (relative phase) symmetry. We study the effects that a spatially random photo-associative-dissociative symmetry breaking coupling of the systems. Such coupling allows to control the relative phase between a superfluid order parameter of the Fermi system and the condensate wavefunction of molecules for temperatures below the BCS critical temperature. The presented mechanism of phase control belongs to the general class of disorder-induced order phenomena that rely on breaking of continuous symmetry.Comment: 4 pages, 2 figure
    • 

    corecore