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Microsatellite instability is characteristic of certain types of cancer, and is present in rodents lacking speci®c DNA mismatch

repair proteins. These azoospermic mice exhibit spermatogenic defects similar to some human testicular failure patients.

Therefore, we hypothesized that microsatellite instability due to de®ciencies in mismatch repair genes might be an unrecognized

aetiology of human testicular failure. Because these azoospermic patients are candidates for testicular sperm extraction and

ICSI, transmission of mismatch repair defects to the offspring is possible. Seven microsatellite loci were analysed for instability

in specimens from 41 testicular failure patients and 20 controls. Blood and testicular DNA were extracted from patient and con-

trol specimens, and ampli®ed by PCR targeting seven microsatellite loci. DNA fragment length was analysed with an ABI Prism

310 Genotyping Machine and GeneScan software. Immunohistochemistry was performed on paraf®nized testis biopsy sections

and cultured testicular ®broblasts from each patient to determine if expression of the mismatch repair proteins hMSH2 and

hMLH1 was normal in both somatic and germline cells. Results demonstrate that microsatellite instability and DNA mismatch

repair protein defects are present in some azoospermic men, predominantly in Sertoli cell-only patients (P < 0.01 and P < 0.05

respectively). This provides evidence of a previously unrecognized aetiology of testicular failure that may be associated with can-

cer predisposition.
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Introduction

Male factor abnormalities account for 30±50% of all infertility cases

(Lipshultz and Howards, 1997). Approximately 30±40% of men with

abnormal sperm production do not have a detectable cause. It has been

suggested that genetic alterations may be involved in a signi®cant

percentage of all severe cases (Rucker et al., 1998).

ICSI is a reproductive technology which, in conjunction with

testicular sperm retrieval (TESE), is used to overcome severe male

infertility to help couples achieve an otherwise impossible pregnancy

(Palermo et al., 1992). This technique bypasses the natural barriers

that would normally block fertilization by defective sperm. Thus, the

widespread use of TESE±ICSI for the management of idiopathic male

infertility has theoretical concerns. The long-term genetic conse-

quences in the offspring conceived by these techniques are largely

unde®ned and the transmission of undesirable genetic traits remains a

possibility (Tripp et al., 1997; Matzuk and Lamb, 2002).

Organisms have evolved a number of mechanisms to minimize

genetic defects by ensuring high-®delity transmission of DNA from

one generation to the next. DNA polymerase proofreading activity

corrects errors arising during DNA replication. For the errors that are

not corrected, the DNA mismatch system (MMR) is partially

responsible for their repair (Loeb and Kunkel, 1982).

In humans, MMR is primarily mediated by the MutS yeast

homologues (hMSH2, hMSH3 and hMSH6), which subsequently

interact with the MutL homologues (hMLH1 and PMS2), ultimately

recruiting endo- and exonucleases, as well as other proteins involved

in DNA replication/repair that lead to the repair of the mismatched

region. The hMSH2±hMSH6 heterodimers are mainly involved in

mismatch recognition, whereas hMSH2±hMSH3 dimers can play a

role in the repair of insertion±deletion loops. The somewhat redundant

function of hMSH3 and hMSH6 highlights the importance of hMSH2

for the maintenance of genomic integrity. Similarly, hMLH1 is

thought to have a unique role in MMR. hMLH1±PMS2,

hMLH1±PMS1 and hMLH1±hMLH3 heterodimers occur, but only

the former set of dimers (hMLH1 and PMS2) is proven to be involved

in MMR (Jiricny and Nystrom-Lahti, 2000; Lipkin et al., 2000).

Studies in bacteria, yeast and rodents indicate that the genes

encoding MMR enzymes are also required for normal meiosis (Bocker

et al., 1999; Geeta Vani et al., 1999). In fact, mice with either targeted

deletions or truncated mutations of MMR and MMR-associated

proteins exhibit fertility disorders similar to those observed in humans.

Conditions ranging from complete absence of spermatogenesis (brac2

mutant mice) to morphologically abnormal sperm production (pms2-

de®cient mouse) or meiotic arrest (mlh1, atm, mlh5 and mlh3 null

mice) occur (Baker et al., 1995; Barlow et al., 1996; Edelmann et al.,

1996, 1999; Rotman and Shiloh, 1998; Lipkin et al., 2000). Likewise,

the well-known human genetic disorder ataxia telangiectasia, which is

caused by atm mutations, is also characterized by infertility (Barlow

et al., 1996).
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DNA repair defects such as these are a known cause of genomic

instability (Jiricny and Nystrom-Lahti, 2000). DNA microsatellite

analysis provides an important tool to assess genomic instability in

malignancies and in normal tissues (Mao et al., 1994).

To date, human studies have not focused on the expression pattern

of all MMR proteins during male germ cell differentiation; in rodents,

hMSH2 and hMLH1 are expressed during spermatogenesis (Geeta

Vani et al., 1999; Richardson et al., 2000). In mice, hMSH2 shows

increased expression until the zygotene spermatocyte with reduced

expression in the later stages of spermatocyte development. Trace

levels of expression are present until the spermatid stage. hMLH1, on

the other hand, shows a constitutive and regular pattern of expression

during all stages of spermatogenesis until the spermatid stage. Both

proteins exhibit nuclear localization in both rodents and humans, as

determined by immunohistochemical analyses in other human tissues

(not testis) (Simpkins et al., 1999).

Defects in some MMR proteins have systemic effects, such as

enhanced cancer susceptibility in both null mice and humans (Liu

et al., 1996; Dunlop et al., 1997; Prolla et al., 1998; Jiricny and

Nystrom-Lahti, 2000). It is unknown whether patients with patho-

logical testicular phenotypes similar to the ones observed in mice with

defective DNA repair proteins exhibit microsatellite instability and are

predisposed to develop tumours at an early age. Moreover, it is

unknown whether the children conceived through TESE±ICSI are

inheriting such a predisposition.

The current study tested the hypothesis that genomic instability is

associated with spermatogenic failure in humans.

Materials and methods

Sample selection

Fifty azoospermic men undergoing testicular biopsy were recruited for this

study with the approval and oversight of Baylor College of Medicine's

Institutional Review Board for Human Subjects. Subjects gave informed

consent. The mean age of all patients was 33 years. Of these patients, 30

underwent karyotype analysis for Y chromosome microdeletions. Two patients

presented with karyotype abnormalities and two others with Y chromosome

microdeletions.

Testicular specimens were collected and divided into three portions. One

tissue fragment was ®xed in Bouin's solution, paraf®nized and stained for

routine histological examination. Based on standard pathological qualitative

guidelines, each biopsy was classi®ed as Sertoli cell-only (SCO; 19 patients),

maturation arrest (10 patients), hypospermatogenesis (12 patients) or normal,

but obstructed, spermatogenesis (nine patients). A second portion of the sample

(from the same biopsy side) was used for DNA extraction. The remaining

portion was cultured in vitro to establish a primary testicular ®broblast culture.

Peripheral blood was collected from each patient and used for DNA

puri®cation.

Snap-frozen testicular and liver samples were obtained from 11 fertile

deceased men immediately after death and stored at ±70°C prior to DNA

extraction to avoid tissue degradation and DNA fragmentation. As these men

showed normal testis histology and no evidence of liver disease they were

considered suitable controls. Additionally, fresh preputial tissue was collected

from 10 healthy children undergoing circumcision, and cultured in vitro to

obtain primary ®broblast cultures.

DNA extraction

Testicular and liver genomic DNA was isolated using the Wizardâ Genomic

DNA puri®cation kit (Promega, Madison, WI, USA) following manufacturer

protocol. Blood genomic DNA was prepared from peripheral blood leukocytes

using PuregeneÔ DNA isolation kit (Gentra Systems, Inc., Minneapolis, MN,

USA) as recommended. DNA concentrations were determined by standard

spectroscopic measurements. Samples were stored at ±20°C in Tris-EDTA buffer.

DNA ampli®cation

Seven microsatellite loci located on different chromosomes were ampli®ed

from genomic DNA by PCR. According to the `International Workshop on

Microsatellite Instability and RER Phenotypes in Cancer Detection and

Familial Predisposition' guidelines, analysis of a panel of at least ®ve

microsatellite loci is recommended to establish whether instability is present

(Boland et al., 1998). Since microsatellite stability is believed to be maintained

by several proteins, each speci®c for a certain type of error, analysis of different

types of repeats known to be susceptible to instability should be performed.

Thus, loci selected consisted of two mononucleotide tandem repeats (BAT-26

and BAT-40), four dinucleotide tandem repeats (D2S123, D17S250, D18S58,

D19S49) and one trinucleotide repeat locus [within exon 1 of the androgen

receptor (AR)]. Corresponding primer sequences used for PCR are described in

Table I. Each of the forward primers synthesized by PE Biosystems (Foster

City, CA, USA) was ¯uorescent-labelled with 6-FAM (D2S123, AR and

D17S250), HEX (D18S58 and D19S49) or NED (BAT-26 and BAT-40). The

reverse-oriented, non-labelled primers were supplied by Gibco (Life

Technologies; Grand Island, NY, USA).

BAT-26/D2S123/D18S58 and BAT-40/D17S250/D19S49 loci were ampli-

®ed by triplex PCR; AR exon 1 ampli®cation was performed by single PCR.

Triplex ampli®cation of testicular, liver and blood DNA was carried out

following PE Biosystems multiplex PCR recommended protocol. AR

ampli®cation was performed as previously described (Marcelli et al., 2000).

Fragment analysis and determination of microsatellite instability

PCR products were run on an ABI Prism 310 sequence analyser following the

manufacturer's recommended protocol (Perkin Elmer, USA). Brie¯y, PCR

products were separated by high-resolution ¯uorescent electrophoresis and the

length of individual fragments determined with GeneScan software by

comparison with the ¯uorescent-labelled internal size marker ROX-500 (PE

Biosystems). Genomic DNA were assayed in two to four independent PCR

ampli®cations and electrophoresis runs to verify reproducibility.

The elution pattern for paired blood and testis PCR fragments was compared

and the length of the polymorphic repeats determined for all the loci. Normally,

when genomic stability prevails, no difference is noted between the repeat

lengths for the paired blood and testis samples, and these lengths are consistent

throughout all tissues in the body. Thus, microsatellite instability is present

when different sized alleles are noted in the same individual for blood and

testicular DNA, for at least one of all the loci tested.

Primary testicular ®broblast culture

Fresh testicular and foreskin specimens were aseptically collected, plated and

maintained in Dulbecco's modi®ed Eagle medium, supplemented with 10%

Table I. Microsatellite loci tested to determine genomic stability, their characteristics and the corresponding primers used for PCR ampli®cation

Microsatellite Type Chromosome Forward primer Reverse primer Associated gene

BAT-26 (A)n 2 TGACTACTTTTGACTTCAGCC CCCAATTTTTACAACTAACCAA MSH2 gene
BAT-40 (A)n 1 ATTAACTTCCTACACCACAAC GTAGAGCAAGACCACCTTG 3b-HSD gene
D2S123 (CA)n 2 ACATTGCTGGAAGTTCTGGC ACCATAGGTTCAGTCTTTCC ±
D17S250 (CA)n 17 GCTGGCCATATATATATTTAAACC CCAAATTTATATATATACCGGTCG ±
D18S58 (CA)n 18 GCTCCCGGCTGGTTTT TTCAAGGACGCTAAAGGTCGG ±
D19S49 (CA)n 19 GTGTTGTTGACCTATTGCAT TACGTTATCCAGTTGTTGTG ±
AR, exon 1 (CAG)n X AGGCACCCAGAGGCCGCGAGCGCAG GAAGGTTGCTGTTCCTCATCCAGG Androgen receptor gene
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fetal bovine serum and 2% penicillin±streptomycin (all provided by

Gibco±Life Technologies; Grand Island, NY, USA), following standard

protocols in order to set up ®broblastic cultures. Immunohistochemistry

analysis was performed on the cultured ®broblasts at the second cell passage.

Immunohistochemistry analysis

Fibroblastic cultures in the exponential phase of growth were ®xed on slide

chambers with cold acetone for 10 min. Paraf®n-embedded testicular 4 mm

sections were assayed by immunohistochemistry using the Rabbit ABC

Staining System kit following manufacturer's recommendations (Santa Cruz

Biotechnology, Inc., Santa Cruz, CA, USA). Af®nity-puri®ed rabbit polyclonal

antibodies against hMSH2-N, hMLH1-N and hMLH1-C were used (Santa Cruz

Biotechnology). The corresponding blocking peptides (Santa Cruz

Biotechnology) were combined as recommended with each of the mentioned

antibodies for neutralization and used as negative controls. As a positive

control, an af®nity-puri®ed rabbit polyclonal antibody raised against c-FOS

(Santa Cruz Biotechnology) was used. The concentration of primary antibodies

was 5 mg/ml.

Following staining, slides were allowed to rest for 30 min at room

temperature, and then microscopically examined at 3100, 3200 and 3400

magni®cation, to determine the pattern and localization of MMR enzyme

expression. MMR expression was considered normal when the expression

pattern (cell speci®city and cellular localization) was nuclear and similar to that

observed for the rodent testis (for details, see Introduction).

Statistical analysis

Histopathological states (maturation arrest, hypospermatogenesis, SCO and

normal) were analysed with respect to those displaying and not displaying

instability using a c2-test. Instability frequencies for the various histopatho-

logical states were similarly analysed. Fisher's one- and two-sided exact tests

were used to de®ne the signi®cance of the mismatch repair defects of the

individual pathologies. P < 0.05 was considered signi®cant.

Results

To determine whether testicular failure patients present a higher

incidence of genomic instability than men with normal testicular

histology, seven microsatellite loci lengths were compared between

paired blood and testis DNA samples from 41 azoospermic patients

(presenting with SCO, maturation arrest or hypospermatogenesis) and

20 controls (11 deceased men and nine patients with obstructed

azoospermia, all with normal testicular histology), as shown in

Figure 1A and B. Although results were extremely consistent between

different ampli®cations and fragment analyser runs (Figure 1A), of the

427 total loci tested for instability, successful ampli®cation and

fragment analysis could not be obtained for 8% of all loci, possibly

due to DNA degradation. Therefore, the frequency of instability was

also determined by a comparison of the number of loci affected to the

total loci analysed for each of the histological categories.

The incidence of microsatellite instability was signi®cantly related

to testicular pathology (P < 0.01). The number of unstable DNA

molecules present in each patient's sample was not assayed, as that

type of quantitative analysis is not usually performed or required to

determine the presence of microsatellite instability.

SCO patients exhibited a signi®cant increase in the percentage of

patients with microsatellite instability (P = 0.007) and the overall

instability frequency (P = 0.007), as compared to all patients and

controls with germ cells in the testis (Figure 1C). In addition, 10.5% of

the SCO patients presented high microsatellite instability (H-MSI),

with more than two of the loci analysed showing instability.

Conversely, H-MSI was not observed in any controls or maturation

arrest patients. It was present in 8.3% of the hypospermatogenesis

patients (results not shown).

To de®ne a potential cause for the observed instability, immuno-

histochemical analysis of hMSH2, hMLH1-N and hMLH1-C was used

to characterize MMR protein expression in the testicular failure

patients. These two proteins were chosen because of their essential

role in MMR repair and meiosis, as well as for their known

requirement for the maintenance of microsatellite stability in humans

(Liu et al., 1996). Moreover, due to the known cell-speci®c pattern of

expression in the rodent testis, these two proteins were expected to be

present in the testicular sections of all the testicular failure conditions.

To assess both the germinal and somatic cells, histological testicular

sections and fresh, in-vitro cultured testicular ®broblasts from the

same infertile patients were analysed respectively. Early cell senes-

cence, perhaps due to cell culture shock or mitotic clock restrictions,

prevented immunohistochemical analysis of several patients' ®bro-

blasts. Additionally, testicular sections were not available from some

of the testicular failure patients due to the small biopsy size. Thus, the

pattern of expression of hMSH2 and hMLH1 in the germ cell lines of a

few patients could not be assessed. A total of 25 patients was analysed

for hMSH2 and hMLH1 somatic expression, of which 10 presented

with SCO, ®ve with maturation arrest, ®ve with hypospermatogenesis

and ®ve with normal histology. Ten normal ®broblastic cultures (in-

vitro cultured from foreskin samples of babies undergoing circumci-

sion) provided additional normal controls. Nineteen patients were

assessed for MMR protein expression in testis sections, of which eight

presented SCO, six maturation arrest, one hypospermatogenesis and

four normal histology.

The incidence of MMR protein expression abnormalities was

signi®cantly related to testicular pathology, being particularly

increased in SCO patients (P < 0.05). The abnormal patterns observed

in the male infertility patients consisted of a complete absence of

expression of either hMSH2 and/or hMLH1, abnormal cellular

localization of hMSH2 and/or hMLH1, and changes in immunor-

eactivity for hMLH1-N and hMLH1-C, suggesting truncation of the

protein or other type of protein modi®cation. Nevertheless, since

immunohistochemistry is not a quantitative technique, this last

observation must be con®rmed by a different approach. No abnormal

expression patterns were observed for any of the controls (results not

shown). Results obtained (total and individual defects observed) are

presented in Figure 2A and B. Figure 2B shows examples of the MMR

expression defects found in azoospermic men assessed by immuno-

histochemical analysis.

Four of the azoospermic men included in this study presented a-

priori structural chromosomal abnormalities not known to be related to

either microsatellite instability or MMR abnormalities. These patients

did not show any microsatellite instability between their blood and

testis samples for all the loci examined and exhibited normal MMR

protein expression patterns.

Discussion

ICSI has revolutionized the reproductive medicine ®eld. Ten years

ago, before the development of TESE±ICSI, most azoospermic men

were simply unable to conceive a child. Currently, with the application

of these techniques many men with the most severe forms of male

infertility can experience fatherhood. These infertile men will now

transmit their genes to their offspring through a conception only

possible with ICSI. Genetic alterations have long been recognized as

potential causes for some cases of human male infertility (Tripp et al.,

1997; Matzuk and Lamb, 2002). Potentially, undesirable genetic

phenotypes that are normally prevented by natural barriers to

conception by defective sperm are now transmitted to the offspring

of these azoospermic men.

With the advent of mouse embryonic stem cell gene targeting

technology, we have witnessed an explosion in the identi®cation of

new genes affecting spermatogenesis. Whether these genetic defects
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identi®ed in mice are associated with human male infertility remains

to be proven. One such group of genes required for male fertility

encodes the proteins of the MMR system. Therefore, we hypothe-

sized that defects in MMR might be the cause of some types of

testicular failure. By analogy to some cancer patients and to mice

models, transmission of these defective MMR genes to the offspring

through TESE±ICSI may have profound systemic manifestations.

Over 20 years ago, researchers suggested that mutations in genes

required for DNA repair might result in the meiotic defects found in

some infertile men (Chaganti and German, 1979). In fact, the human

genetic disorder ataxia telangiectasia, caused by mutations in the

DNA repair atm gene, is characterized by infertility (Barlow et al.,

1996). Of note, the incidence of infertility in other DNA repair-

de®cient conditions, such as human non-polyposis colon cancer

(HNPCC), is currently unknown. HNPCC is not usually diagnosed

until the patients reach their early to mid-forties. Therefore, HNPCC

patients with MMR germline mutations may experience a progres-

sive decline in fertility with ageing prior to cancer onset. Thus, they

may be able to conceive and pass on these gene defects before the

physiological consequences of a defective MMR system are

recognized (cancer).

Because there are no sperm in the ejaculate of azoospermic patients,

testis biopsies provided the tissue to assess testicular DNA, including

the germ cells. Since testicular genomic DNA is extracted from a

Figure 1A, B. Legend on facing page.
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heterogeneous mixture of cell types with several embryonic deriva-

tives (and the small biopsy fragments provided for basic research

investigators are not suf®cient for tissue dissection), it is important to

ensure a representative sampling of all testicular cell populations

present in the PCR-ampli®ed DNA for analysis. Therefore, large pool

PCR followed by fragment analysis was used. Microsatellite instabil-

ity determination was performed as previously described (Manley

et al., 1999; Maehara et al., 2001). To avoid artefacts due to PCR

polymerase slippage, a high ®delity DNA polymerase was used and

the PCR cycling times were short. To avoid concerns that impurities or

other types of contaminants from two different tissue types (blood and

testis) could differently affect the PCR performance resulting in

misleading ®ndings, samples demonstrating instability were con-

®rmed by concomitant PCR and fragment analysis of a mixed blood

and testis paired DNA sample [the results (not shown) indicated the

expected ®nding of multiple peaks]. Additionally, to assure consist-

ency and minimize the possibility of false-negative or false-positive

results, several independent repetitive PCR and fragment analysis runs

were performed for each sample to rule out artefactual PCR `stutter' or

`chatter' as a potential source of instability. Thus, the negative or

positive instability results were indubitable. Irregularities from the

fragment analyser runs were also avoided by assaying blood and

Figure 1. Microsatellite instability in testicular failure patients. Two examples of patients presenting microsatellite stability (A) and instability (B) at the AR
locus. Shown are the GeneScan data tables of the elution times for each PCR fragment and their respective peak heights, with the associated GeneScan
histograms showing the AR PCR fragment lengths (base pairs; x-axis) for the paired blood (upper panels) and testis specimens (lower panels) plotted against the
PCR fragment peak height (y-axis) after a high-resolution ¯uorescent electrophoresis run. The peak height is directly proportional to the number of ¯uorescent
fragments detected by the ABI 310 Analyser after capillary electrophoresis. Note the similar (A) and different (B) migration patterns of the PCR fragment
peaks (blue) for blood and testis in comparison to the molecular weight marker (red). In this example of microsatellite instability (B), the testis GeneScan
histogram peak exhibited a homogeneous shift towards the right, compared with results obtained with the same patient's blood. Thus, all testicular DNA
molecules that were ampli®ed and analysed for this patient exhibited an expanded CAG repeat length (with an expansion of two or three repeats, equivalent to
6±9 bp), as compared to the sample of patient's blood DNA. In this particular case, however, the expansion may not have occurred throughout the testis and
may simply represent a clonal mutation, as only a small biopsy from one location was available for analysis. Therefore, the results do not guarantee the
presence of different cell types in the specimen. In addition, since under-represented alleles may not be ampli®ed with the same ef®ciency, they may not be
equivalently detected despite their presence. Similar results demonstrating instability were obtained for the other loci tested. Microsatellite instability affecting a
portion of the cells analysed was also characterized by the appearance of a new peak in the testicular histogram, in addition to the major allele present in the
patient's blood histogram. (C) Percentage of patients with instability and their respective instability frequency. SCO patients exhibited signi®cantly increased
microsatellite instability (P = 0.007) and instability frequency (P = 0.007), compared with patients with other pathologies and with normal controls (**). No
other histological groups presented signi®cant differences when compared with each other or with normal controls. (D) Percentage of patients with instability
for each of the loci tested. Statistical analysis showed that none of the individual loci presented a signi®cant correlation with any of the testicular pathologies
(P > 0.05), due to insuf®cient power. SCO = Sertoli cell-only syndrome; MATA = maturation arrest; HYPO = hypospermatogenesis; N = normal histology.
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paired testis samples together. Results demonstrate that microsatellite

instability is present in some testicular failure patients at a much

higher frequency than in normal fertile men (P < 0.01).

SCO men demonstrated both the highest percentage of patients with

genomic instability (P = 0.007) and the highest instability frequency

(P = 0.007). In addition, an increased incidence of high microsatellite

instability (H-MSI) was also observed in the SCO group. H-MSI,

which is considered to be present when >30±40% of the loci analysed

show instability, has been proposed to provide a better indication for

MMR abnormalities than total microsatellite instability (Tomlinson

et al., 2002). Although L-MSI (low microsatellite instability) is

believed to be a genuine phenomenon that precedes H-MSI, some

authors argue that since slippage of any microsatellite can normally

occur approximately once in every 1000 cell divisions, if a large

enough number of microsatellites are typed, it is likely that differences

will be found (Duval and Hamelin, 2002; Tomlinson et al., 2002).

Although this normal slippage can certainly help explain baseline

levels of instability (such as detected in normal controls), L-MSI level

differences between controls and the different classes of testicular

failure patients were also observed.

In contrast, the maturation arrest and hypospermatogenesis patients

did not exhibit signi®cant instability frequency. Surprisingly, matur-

ation arrest patients have been reported to have instability at the

D19S49 locus (Nudell et al., 2000). A different technical approach and

Figure 2. (A) Percentage of patients with abnormal DNA mismatch system (MMR) protein expression for each of the different histological categories.
Incidence of MLH1, MSH2 and total (MLH1 + MSH2) defects in the testicular somatic (S) and germline (G) cells of each histological group are shown. Total
MMR abnormalities (T), corresponding to the combined somatic and germline MMR expression defects, are shown for each protein tested and each
pathological category. Total MMR abnormalities, as well as total hMLH1 expression defects, were signi®cantly correlated with the Sertoli cell-only (SCO)
group of patients (*P < 0.05). (B) Expression of DNA MMR proteins in human testis tissues: panels 1, 2 and 3 (top; left to right) show immunohistochemistry
assays performed on fresh, in-vitro cultured testicular ®broblasts; panels 4, 5 and 6 (bottom; left to right) show immunohistochemistry assays performed on
paraf®nized testicular sections. All pictures captured with 3200 ampli®cation. (1) Infertile patient with normal histology and normal expression of hMSH2.
(2) SCO patient with abnormal cytoplasmic localization of hMLH1. (3) SCO patient with no expression of hMSH2. (4) Maturation arrest (MATA) patient with
normal expression of hMLH1. Note the positive signal in the nucleus of the Sertoli cells (s), primary spermatocytes (ps) and interstitial cells (ic). (5) Abnormal
cytoplasmic hMSH2 expression in a MATA patient. (6) Absence of hMSH2 expression in a SCO patient.
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the small number of patients evaluated by Nudell et al. may have

in¯uenced the sensitivity of instability detection.

In general, no correlation between the loci affected by instability

and the patient's histological characteristics was found (P > 0.05).

However, hypospermatogenesis patients exhibited a high percentage

of instability in the BAT-40 locus (Figure 1d). This may be of

importance, as the BAT-40 repeat locus is located within the 3b-

hydroxysteroid dehydrogenase (3b-HSD) gene, and the involvement

of this protein in testosterone biosynthesis is well-recognized. As

differences in the polymorphic repeat lengths within genes in¯uence

the protein function, it will be important to understand the role of these

polymorphisms in the 3b-HSD gene in hypospermatogenesis.

Similarly, the polyglutamine triplet repeat length within exon 1 of

the androgen receptor was one of the loci predominantly affected in

the SCO patients (Figure 1d). This AR polyglutamine polymorphism is

known to in¯uence receptor activity (Mhatre et al., 1993; Beilin et al.,

2000), and this may contribute to the pathology of some SCO

syndrome cases. Moreover, AR repeat length expansion is associated

with some severe diseases that may be inherited by the offspring of

these men with microsatellite instability (Casella et al., 2001).

Although the complete absence of germ cells in the testis is de®ned

as SCO syndrome, in more than half of these cases patients will show

occasional foci of normal spermatogenesis (Silber et al., 1995).

Therefore, instability may be present in the under-represented germ

cell population, and may affect offspring conceived through

TESE±ICSI. Importantly, due to the total absence of sperm in the

ejaculate of the patients and the small biopsy size, it is impossible to

differentiate between the germ and somatic cell lines within these

testicular samples with instability. Nevertheless, if only the testicular

somatic cell lines exhibit instability, systemic consequences for the

patients may still occur. By analogy to cancer patients who exhibit

microsatellite instability and to mouse models de®cient in MMR,

infertility patients with instability may be predisposed to develop

tumours (Baker et al., 1995; Edelmann et al., 1996; Roest et al., 1996;

Rotman and Shiloh, 1998; Edelmann et al., 1999; Lipkin et al., 2002).

While no history of cancer was reported for this patient population,

these patients were young (with the mean age in the lower thirties) and

tumours may occur later in life. In fact, impairment of cell

proliferation due to MMR defects in an organ with a high rate of

cell division (such as testis) would be expected to be apparent sooner

than in organs with a lower rate of cell turnover. Conversely, the

microsatellite instability and MMR abnormalities identi®ed in testis

may not affect other organsÐorgan and tissue mosaicism occur and

play a major role in certain sporadic tumours.

Sertoli cells are not proliferative in adult testis. The differences in

repeat length identi®ed in the current study may have occurred

through DNA polymerase slippage during development, while these

cells were still dividing. Most remarkably, repeat variations might

occur in the absence of DNA replication through spontaneous

acquisition of secondary alternative structures or through repair

attempts after cytotoxic DNA damage (Sinden, 2001). This may

explain the presence of genomic instability in the Sertoli cells.

Germ cells may be more sensitive to defects in MMR machinery

when compared with somatic cells and these functional defects affect

spermatogenesis in animal models (Baker et al., 1995; Edelmann et al.,

1996; Roest et al., 1996; Rotman and Shiloh, 1998; Edelmann et al.,

1999; Lipkin et al., 2002). The increased complexity of meiosis

compared with the known steps required for mitosis may require more

checkpoints for cell cycle progression. Defects in the MMR system

might not be enough to impair mitosis, but suf®cient to impair meiosis

resulting in azoospermia. The fact that the testis exhibits the highest

rate of cell proliferation in the human body may also explain the loss

of MMR control observed in testicular samples compared with the

paired blood samples (which have a lower, although still high,

proliferation rate) through MMR system saturation. This may explain

why the testicular failure patients did not present with other more

severe conditions known to be associated with MMR abnormalities,

such as HNPCC.

The immunohistochemistry results support these hypotheses. The

incidence of defects in the DNA repair proteins, hMHS2 and hMLH1,

was signi®cantly higher in SCO patients when compared with those

men with normal spermatogenesis (P < 0.05). As expected, hMLH1

defects were the most common (P < 0.05). Since these defects were

present in both the somatic and mixed (somatic + germinal) cell lines

of the patients analysed, SCO individuals may have an enhanced risk

for tumour development. Since there is no long-term patient follow-up

of the infertile male after diagnosis or treatment (assisted reproductive

technology), little is known about the incidence of cancer in the men

diagnosed with idiopathic infertility. The occurrence of a malignant

tumour will likely be brought to the attention of a physician (other than

an infertility specialist), who may not be aware that the patient was

infertile. Nevertheless, a relationship between male infertility and

testicular cancer has been proposed. In fact, men with an abnormal

semen analysis have a 1.6-fold increased risk of developing testicular

cancer compared with fertile men (Jacobsen et al., 2000).

Unlike the mouse models, hMLH1 defects in the present study were

rarely associated with sperm maturation arrest. In fact, hMSH2 defects

(not associated with male infertility in the mouse) were observed,

mainly in maturation arrest patients. These observations suggest that

although evolutionarily conserved, MMR proteins might have slightly

divergent functions in rodents and humans. Since some patients with

MMR de®ciencies presented with some degree of spermatogenesis,

some of the proteins analysed may have analogous or redundant

functions in the testis.

In conclusion, we report for the ®rst time the presence of signi®cant

microsatellite instability in SCO patients. The genomic instability

identi®ed does not affect all of the testicular cell subpopulations

equally. In addition, defects in the cellular localization and expression

of two MMR proteins are demonstrated in SCO patients. These

®ndings provide insight into a new aetiology of SCO syndrome and

raise the possibility that there may be consequences for the offspring

conceived by ICSI. More studies are needed to de®nitely prove this

suggested association between MMR abnormalities and potential

consequences for TESE±ICSI conceived children.
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