48 research outputs found

    Whole blood transcriptome profiles of trypanotolerant and trypanosusceptible cattle highlight a differential modulation of metabolism and immune response during infection by Trypanosoma congolense

    Get PDF
    Animal African trypanosomosis, caused by blood protozoan parasites transmitted mainly by tsetse flies, represents a major constraint for millions of cattle in sub-Saharan Africa. Exposed cattle include trypanosusceptible indicine breeds, severely affected by the disease, and West African taurine breeds called trypanotolerant owing to their ability to control parasite development, survive and grow in enzootic areas. Until now the genetic basis of trypanotolerance remains unclear. Here, to improve knowledge of the biological processes involved in trypanotolerance versus trypanosusceptibility, we identified bovine genes differentially expressed in five West African cattle breeds during an experimental infection by Trypanosoma congolense and their biological functions. To this end, whole blood genome-wide transcriptome of three trypanotolerant taurine breeds (N’Dama, Lagune and Baoulé), one susceptible zebu (Zebu Fulani) and one African taurine x zebu admixed breed (Borgou) were profiled by RNA sequencing at four time points, one before and three during infection. As expected, infection had a major impact on cattle blood transcriptome regardless of the breed. The functional analysis of differentially expressed genes over time in each breed confirmed an early activation of the innate immune response, followed by an activation of the humoral response and an inhibition of T cell functions at the chronic stage of infection. More importantly, we highlighted overlooked features, such as a strong disturbance in host metabolism and cellular energy production that differentiates trypanotolerant and trypanosusceptible breeds. N’Dama breed showed the earliest regulation of immune response, associated with a strong activation of cellular energy production, also observed in Lagune, and to a lesser extent in Baoulé. Susceptible Zebu Fulani breed differed from other breeds by the strongest modification in lipid metabolism regulation. Overall, this study provides a better understanding of the biological mechanisms at work during infection, especially concerning the interplay between immunity and metabolism that seems differentially regulated depending on the cattle breeds

    The Chalcidoidea bush of life: evolutionary history of a massive radiation of minute wasps.

    Get PDF
    Chalcidoidea are mostly parasitoid wasps that include as many as 500 000 estimated species. Capturing phylogenetic signal from such a massive radiation can be daunting. Chalcidoidea is an excellent example of a hyperdiverse group that has remained recalcitrant to phylogenetic resolution. We combined 1007 exons obtained with Anchored Hybrid Enrichment with 1048 ultra-conserved elements (UCEs) for 433 taxa including all extant families, >95% of all subfamilies, and 356 genera chosen to represent the vast diversity of the superfamily. Going back and forth between the molecular results and our collective knowledge of morphology and biology, we detected bias in the analyses that was driven by the saturation of nucleotide data. Our final results are based on a concatenated analysis of the least saturated exons and UCE datasets (2054 loci, 284 106 sites). Our analyses support an expected sister relationship with Mymarommatoidea. Seven previously recognized families were not monophyletic, so support for a new classification is discussed. Natural history in some cases would appear to be more informative than morphology, as illustrated by the elucidation of a clade of plant gall associates and a clade of taxa with planidial first-instar larvae. The phylogeny suggests a transition from smaller soft-bodied wasps to larger and more heavily sclerotized wasps, with egg parasitism as potentially ancestral for the entire superfamily. Deep divergences in Chalcidoidea coincide with an increase in insect families in the fossil record, and an early shift to phytophagy corresponds with the beginning of the "Angiosperm Terrestrial Revolution". Our dating analyses suggest a middle Jurassic origin of 174 Ma (167.3-180.5 Ma) and a crown age of 162.2 Ma (153.9-169.8 Ma) for Chalcidoidea. During the Cretaceous, Chalcidoidea may have undergone a rapid radiation in southern Gondwana with subsequent dispersals to the Northern Hemisphere. This scenario is discussed with regard to knowledge about the host taxa of chalcid wasps, their fossil record and Earth's palaeogeographic history

    New WGS data and annotation of the heterosomal vs. autosomal localization of Ostrinia scapulalis (Lepidoptera, Crambidae) nuclear genomic scaffolds

    No full text
    International audienceHere, we introduce new whole-genome shotgun sequencing and annotation data describing the autosomal vs. Z-heterosomal localization of nuclear genomic scaffolds of the moth species Ostrinia scapulalis. Four WGS libraries (corresponding to 2 males and 2 females) were sequenced with an Illumina HiSeq2500 sequencing technology, and the so-called 'AD-ratio' method was applied to distinguish between autosomal and Z-heterosomal scaffolds based on sequencing depth comparisons between homogametic (male) and heterogametic (female) libraries. A total of 25,760 scaffolds (corresponding to 341.69 Mb) were labelled as autosomal and 1273 scaffolds (15.29 Mb) were labelled as Z-heterosomal, totaling about 357 Mb. Besides, 4874 scaffolds (29.07 Mb) remain ambiguous because of a lack of AD-ratio reproducibility between the two replicates. The annotation method was evaluated a posteriori, by comparing depth-based annotation with the exact localization of known genes. Raw genomic data have been deposited and made accessible via the EMBL ENA BioProject id PRJEB26557. Comprehensive annotation is made accessible via the LepidoDB database (http://bipaa. genouesLorgispJostrinia_scapulalisJdownloadigenomeiv1.2/

    Genetic independence between traits separated by metamorphosis is widespread but varies with biological function

    No full text
    Data from this article have been deposited with the Gene Expression Omnibus (GEO) database under accession no GSE226174. This paper also used previously published data, available in GEO under460 accession nos. GSE67505 and GSE67505, in the ArrayExpress database, accession no. E-MTAB-3216, and in SRA, accession no PRJNA615927.International audienceWhy is metamorphosis so pervasive? Does it facilitate the independent (micro)evolution of quantitative traits in distinct life stages, similarly to how it enables some limbs and organs to develop at specific life stages? We tested this hypothesis by measuring the expression of 6400 genes in 41 Drosophila melanogaster inbred lines at larval and adult stages. Only 30% of the genes showed significant genetic correlations between larval and adult expression. By contrast, 46% of the traits showed some level of genetic independence between stages. Gene ontology terms enrichment revealed that across stages correlated traits were often involved in proteins synthesis, insecticide resistance and innate immunity, while a vast number of genes expression traits associated with energy metabolism were independent between life stages. We compared our results to a similar case: genetic constraints between males and females in gonochoric species (i.e. sexual antagonism). We expected selection for the separation between males and females to be higher than between juvenile and adult functions, as gonochorism is a more common strategy in the animal kingdom than metamorphosis. Surprisingly, we found that inter-stage constraints were lower than inter-sexual genetic constraints. Overall, our results show that metamorphosis enables a large part of the transcriptome to evolve independently at different life stages

    Complete mitogenome data from a European specimen of Ostrinia scapulalis (Walker, 1859) (Lepidoptera, Pyraloidea, Crambidae, Pyraustinae)

    No full text
    International audienceWe present an assembly and annotation of the mitogenome of a European specimen of the Adzuki bean borer, Ostrinia scapulalis (Walker, 1859). The present data were obtained by combining WGS data issue of a de novo and a previously published sequence library [1]. We also provide the phylogenetic positioning of the mitogenome within the Ostrinia genus, the Crambidae family and with more distant Lepidoptera species

    Pleistocene origins of chorusing diversity in Mediterranean bush-cricket populations (Ephippiger diurnus)

    No full text
    We studied the Pleistocene diversification of a relatively endemic Mediterranean insect (Ephippiger diurnus; Orthoptera: Tettigoniidae) to understand how species with restricted range may nonetheless exhibit the complex phylogeography normally associated with broad distribution. A time-calibrated molecular phylogeny based on two mitochondrial genes showed that E. diurnus diverged into two major clades, distinguished largely by male song, before or early during the Pleistocene. Several subclades also diverged before the most recent glacial period. Data from 20 microsatellite loci indicated higher genetic diversity in populations along the Mediterranean coast in France, consistent with the hypothesis that glacial refuges were located there. Isolation by distance' accounts for much genetic differentiation between populations, but some adjacent populations are highly differentiated. A Bayesian approach defined genetically distinct clusters and assigned individuals to their most probable cluster. Clusters corresponded to clades in the phylogenetic tree, and we used cluster assignments to estimate interclade gene flow in areas of potential secondary contact. Gene flow is negligible in potential contact areas in the Pyrenees, but a narrow hybrid zone featuring a steep cline exists on the coast. This hybrid zone suggests that the major clades represent distinct species that diverged within a restricted area during the Pleistocene

    Molecular complexity and gene expression controlling cell turnover during a digestive cycle of carnivorous sponge Lycopodina hypogea

    No full text
    International audienceLycopodina hypogea is a carnivorous sponge that tolerates laboratory husbandry very well. During a digestion cycle, performed without any digestive cavity, this species undergoes spectacular morphological changes leading to a total regression of long filaments that ensure the capture of prey and their reformation at the end of the cycle. This phenomenon is a unique opportunity to analyze the molecular and cellular determinants that ensure digestion in the sister group of all other metazoans. Using differential transcriptomic analysis coupled with cell biology studies of proliferation, differentiation, and programmed cell deaths (i.e., autophagy and the destructive/constructive function of apoptosis), we demonstrate that the molecular and cellular actors that ensure digestive homeostasis in a sister group of all remaining animals are similar in variety and complexity to those controlling tissue homeostasis in higher vertebrates. During a digestion cycle, most of these actors are finely tuned in a coordinated manner. Our data benefits from complementary approaches coupling in silico and cell biology studies and demonstrate that the nutritive function is provided by the coordination of molecular network that impacts the cells turnover in the entire organism

    Transcriptional Profiling of Cutaneous MRGPRD Free Nerve Endings and C-LTMRs

    Get PDF
    Cutaneous C-unmyelinated MRGPRD+ free nerve endings and C-LTMRs innervating hair follicles convey two opposite aspects of touch sensation: a sensation of pain and a sensation of pleasant touch. The molecular mechanisms underlying these diametrically opposite functions are unknown. Here, we used a mouse model that genetically marks C-LTMRs and MRGPRD+ neurons in combination with fluorescent cell surface labeling, flow cytometry, and RNA deep-sequencing technology (RNA-seq). Cluster analysis of RNA-seq profiles of the purified neuronal subsets revealed 486 and 549 genes differentially expressed in MRGPRD-expressing neurons and C-LTMRs, respectively. We validated 48 MRGPD- and 68 C-LTMRs-enriched genes using a triple-staining approach, and the Cav3.3 channel, found to be exclusively expressed in C-LTMRs, was validated using electrophysiology. Our study greatly expands the molecular characterization of C-LTMRs and suggests that this particular population of neurons shares some molecular features with Aβ and Aδ low-threshold mechanoreceptors
    corecore