19 research outputs found

    Correlation of infused CD3+CD8+ cells with single-donor dominance after double-unit cord blood transplantation.

    Get PDF
    Single-donor dominance is observed in the majority of patients following double-unit cord blood transplantation (dCBT); however, the biological basis for this outcome is poorly understood. To investigate the possible influence of specific cell lineages on dominance in dCBT, flow cytometry assessment for CD34(+), CD14(+), CD20(+), CD3(-)CD56(+), CD3(+)CD56(+) (natural killer), and T cell subsets (CD4(+), CD8(+), memory, naĂŻve, and regulatory) was performed on individual units. Subsets were calculated as infused viable cells per kilogram of recipient actual weight. Sixty patients who underwent dCBT were included in the final analysis. Higher CD3(+) cell dose was statistically concordant with the dominant unit in 72% of cases (P = .0006). Further T cell subset analyses showed that dominance was correlated more with the naive CD8(+) cell subset (71% concordance; P = .009) than with the naive CD4(+) cell subset (61% concordance; P = .19). These data indicate that a greater total CD3(+) cell dose, particularly of naĂŻve CD3(+)CD8(+) T cells, may play an important role in determining single-donor dominance after dCBT

    Using entropy to maximize the usefulness of data collection

    Get PDF
    This paper presents a generic methodology for measurement system configuration when the goal is to identify behaviour models that reasonably explain observations. For such tasks, the best measurement system provides maximum separation between candidate models. In this work, the degree of separation between models is measured using Shannon’s Entropy Function. The location and type of measurement devices are chosen such that the entropy of candidate models is greatest. This methodology is tested on a laboratory structure and, to demonstrate generality, an existing fresh water supply network in a city in Switzerland. In both cases, the methodology suggests an appropriate set of sensors for identifying the state of the system

    Noninvasive optical coherence tomography monitoring of structure and hydration changes of human corneas in different preservation media

    No full text
    The influence of different tissue preservation (a test solution under development and a standard storage solution) on human cornea morphology, refractive index and hydration was assessed noninvasively by ultrahigh-resolution optical coherence tomography (OCT) over time. For 28 days’ or 15 days’ storage in the preservation media, corneas in the two media exhibited different structural changes with different onset times including epithelial desquamation, edema-induced cornea thickening and change in tissue refractive index. It was found that the variation of the group refractive index over time was only about 2%, while 25% variation of hydration was observed in the storage and subsequent return to normothermic conditions in both preservation media. The results suggest the two media involved different but correlated preservation mechanisms. This study demonstrates that the noncontact, noninvasive, and high-resolution OCT is a powerful tool for noninvasive characterization of tissue morphological changes and hydration process and for assessment of the effects of preservation media on stored tissue integrity. © 2011 Society of Photo-Optical Instrumentation Engineers
    corecore