32 research outputs found

    Plasmodium falciparum liver stage antigen-1 is cross-linked by tissue transglutaminase

    Get PDF
    Background Plasmodium falciparum sporozoites injected by mosquitoes into the blood rapidly enter liver hepatocytes and undergo pre-erythrocytic developmental schizogony forming tens of thousands of merozoites per hepatocyte. Shortly after hepatocyte invasion, the parasite starts to produce Liver Stage Antigen-1 (LSA-1), which accumulates within the parasitophorous vacuole surrounding the mass of developing merozoites. The LSA-1 protein has been described as a flocculent mass, but its role in parasite development has not been determined. Methods Recombinant N-terminal, C-terminal or a construct containing both the N- and C- terminal regions flanking two 17 amino acid residue central repeat sequences (LSA-NRC) were subjected to in vitro modification by tissue transglutaminase-2 (TG2) to determine if cross-linking occurred. In addition, tissue sections of P. falciparum-infected human hepatocytes were probed with monoclonal antibodies to the isopeptide ε-(γ-glutamyl)lysine cross-bridge formed by TG2 enzymatic activity to determine if these antibodies co-localized with antibodies to LSA-1 in the growing liver schizonts. Results This study identified a substrate motif for (TG2) and a putative casein kinase 2 phosphorylation site within the central repeat region of LSA-1. The function of TG2 is the post-translational modification of proteins by the formation of a unique isopeptide ε-(γ-glutamyl)lysine cross-bridge between glutamine and lysine residues. When recombinant LSA-1 protein was crosslinked in vitro by purified TG2 in a calcium dependent reaction, a flocculent mass of protein was formed that was highly resistant to degradation. The cross-linking was not detectably affected by phosphorylation with plasmodial CK2 in vitro. Monoclonal antibodies specific to the very unique TG2 catalyzed ε- lysine cross-bridge co-localized with antibodies to LSA-1 in infected human hepatocytes providing visual evidence that LSA-1 was cross-linked in vivo. Conclusions While the role of LSA-1 is still unknown these results suggest that it becomes highly cross-linked which may aid in the protection of the parasite as it develo

    The ataxia protein sacsin is a functional co-chaperone that protects against polyglutamine-expanded ataxin-1

    Get PDF
    An extensive protein–protein interaction network has been identified between proteins implicated in inherited ataxias. The protein sacsin, which is mutated in the early-onset neurodegenerative disease autosomal recessive spastic ataxia of Charlevoix-Saguenay, is a node in this interactome. Here, we have established the neuronal expression of sacsin and functionally characterized domains of the 4579 amino acid protein. Sacsin is most highly expressed in large neurons, particularly within brain motor systems, including cerebellar Purkinje cells. Its subcellular localization in SH-SY5Y neuroblastoma cells was predominantly cytoplasmic with a mitochondrial component. We identified a putative ubiquitin-like (UbL) domain at the N-terminus of sacsin and demonstrated an interaction with the proteasome. Furthermore, sacsin contains a predicted J-domain, the defining feature of DnaJ/Hsp40 proteins. Using a bacterial complementation assay, the sacsin J-domain was demonstrated to be functional. The presence of both UbL and J-domains in sacsin suggests that it may integrate the ubiquitin–proteasome system and Hsp70 function to a specific cellular role. The Hsp70 chaperone machinery is an important component of the cellular response towards aggregation prone mutant proteins that are associated with neurodegenerative diseases. We therefore investigated the effects of siRNA-mediated sacsin knockdown on polyglutamine-expanded ataxin-1. Importantly, SACS siRNA did not affect cell viability with GFP-ataxin-1[30Q], but enhanced the toxicity of GFP-ataxin-1[82Q], suggesting that sacsin is protective against mutant ataxin-1. Thus, sacsin is an ataxia protein and a regulator of the Hsp70 chaperone machinery that is implicated in the processing of other ataxia-linked proteins

    Maternal and paternal genomes differentially affect myofibre characteristics and muscle weights of bovine fetuses at midgestation

    Get PDF
    Postnatal myofibre characteristics and muscle mass are largely determined during fetal development and may be significantly affected by epigenetic parent-of-origin effects. However, data on such effects in prenatal muscle development that could help understand unexplained variation in postnatal muscle traits are lacking. In a bovine model we studied effects of distinct maternal and paternal genomes, fetal sex, and non-genetic maternal effects on fetal myofibre characteristics and muscle mass. Data from 73 fetuses (Day153, 54% term) of four genetic groups with purebred and reciprocal cross Angus and Brahman genetics were analyzed using general linear models. Parental genomes explained the greatest proportion of variation in myofibre size of Musculus semitendinosus (80–96%) and in absolute and relative weights of M. supraspinatus, M. longissimus dorsi, M. quadriceps femoris and M. semimembranosus (82–89% and 56–93%, respectively). Paternal genome in interaction with maternal genome (P<0.05) explained most genetic variation in cross sectional area (CSA) of fast myotubes (68%), while maternal genome alone explained most genetic variation in CSA of fast myofibres (93%, P<0.01). Furthermore, maternal genome independently (M. semimembranosus, 88%, P<0.0001) or in combination (M. supraspinatus, 82%; M. longissimus dorsi, 93%; M. quadriceps femoris, 86%) with nested maternal weight effect (5–6%, P<0.05), was the predominant source of variation for absolute muscle weights. Effects of paternal genome on muscle mass decreased from thoracic to pelvic limb and accounted for all (M. supraspinatus, 97%, P<0.0001) or most (M. longissimus dorsi, 69%, P<0.0001; M. quadriceps femoris, 54%, P<0.001) genetic variation in relative weights. An interaction between maternal and paternal genomes (P<0.01) and effects of maternal weight (P<0.05) on expression of H19, a master regulator of an imprinted gene network, and negative correlations between H19 expression and fetal muscle mass (P<0.001), suggested imprinted genes and miRNA interference as mechanisms for differential effects of maternal and paternal genomes on fetal muscle.Ruidong Xiang, Mani Ghanipoor-Samami, William H. Johns, Tanja Eindorf, David L. Rutley, Zbigniew A. Kruk, Carolyn J. Fitzsimmons, Dana A. Thomsen, Claire T. Roberts, Brian M. Burns, Gail I. Anderson, Paul L. Greenwood, Stefan Hiendlede

    Multiorgan MRI findings after hospitalisation with COVID-19 in the UK (C-MORE): a prospective, multicentre, observational cohort study

    Get PDF
    Introduction: The multiorgan impact of moderate to severe coronavirus infections in the post-acute phase is still poorly understood. We aimed to evaluate the excess burden of multiorgan abnormalities after hospitalisation with COVID-19, evaluate their determinants, and explore associations with patient-related outcome measures. Methods: In a prospective, UK-wide, multicentre MRI follow-up study (C-MORE), adults (aged ≥18 years) discharged from hospital following COVID-19 who were included in Tier 2 of the Post-hospitalisation COVID-19 study (PHOSP-COVID) and contemporary controls with no evidence of previous COVID-19 (SARS-CoV-2 nucleocapsid antibody negative) underwent multiorgan MRI (lungs, heart, brain, liver, and kidneys) with quantitative and qualitative assessment of images and clinical adjudication when relevant. Individuals with end-stage renal failure or contraindications to MRI were excluded. Participants also underwent detailed recording of symptoms, and physiological and biochemical tests. The primary outcome was the excess burden of multiorgan abnormalities (two or more organs) relative to controls, with further adjustments for potential confounders. The C-MORE study is ongoing and is registered with ClinicalTrials.gov, NCT04510025. Findings: Of 2710 participants in Tier 2 of PHOSP-COVID, 531 were recruited across 13 UK-wide C-MORE sites. After exclusions, 259 C-MORE patients (mean age 57 years [SD 12]; 158 [61%] male and 101 [39%] female) who were discharged from hospital with PCR-confirmed or clinically diagnosed COVID-19 between March 1, 2020, and Nov 1, 2021, and 52 non-COVID-19 controls from the community (mean age 49 years [SD 14]; 30 [58%] male and 22 [42%] female) were included in the analysis. Patients were assessed at a median of 5·0 months (IQR 4·2–6·3) after hospital discharge. Compared with non-COVID-19 controls, patients were older, living with more obesity, and had more comorbidities. Multiorgan abnormalities on MRI were more frequent in patients than in controls (157 [61%] of 259 vs 14 [27%] of 52; p&lt;0·0001) and independently associated with COVID-19 status (odds ratio [OR] 2·9 [95% CI 1·5–5·8]; padjusted=0·0023) after adjusting for relevant confounders. Compared with controls, patients were more likely to have MRI evidence of lung abnormalities (p=0·0001; parenchymal abnormalities), brain abnormalities (p&lt;0·0001; more white matter hyperintensities and regional brain volume reduction), and kidney abnormalities (p=0·014; lower medullary T1 and loss of corticomedullary differentiation), whereas cardiac and liver MRI abnormalities were similar between patients and controls. Patients with multiorgan abnormalities were older (difference in mean age 7 years [95% CI 4–10]; mean age of 59·8 years [SD 11·7] with multiorgan abnormalities vs mean age of 52·8 years [11·9] without multiorgan abnormalities; p&lt;0·0001), more likely to have three or more comorbidities (OR 2·47 [1·32–4·82]; padjusted=0·0059), and more likely to have a more severe acute infection (acute CRP &gt;5mg/L, OR 3·55 [1·23–11·88]; padjusted=0·025) than those without multiorgan abnormalities. Presence of lung MRI abnormalities was associated with a two-fold higher risk of chest tightness, and multiorgan MRI abnormalities were associated with severe and very severe persistent physical and mental health impairment (PHOSP-COVID symptom clusters) after hospitalisation. Interpretation: After hospitalisation for COVID-19, people are at risk of multiorgan abnormalities in the medium term. Our findings emphasise the need for proactive multidisciplinary care pathways, with the potential for imaging to guide surveillance frequency and therapeutic stratification

    Approaches to the isolation and characterization of molecular chaperones

    No full text
    Molecular chaperones are integral components of the cellular machinery involved in ensuring correct protein folding and the continued maintenance of protein structure. An understanding of these ubiquitous molecules is key to finding cures to protein misfolding diseases such as Alzheimer’s and Creutzfeldt–Jacob diseases. In addition, further understanding of chaperones will enhance our comprehension of the way the body copes with the environmental stresses that humans encounter daily. Our laboratory and our collaborators specialize in the production and characterization of chaperones from a wide variety of sources in order to gain a fuller understanding of how chaperones function in the cell. In this review, we primarily use the Hsp70/Hsp40 chaperone pair as an example to discuss recent advances in technology and reductions in cost that lend themselves to chaperone purification from both native and recombinant sources. Common assays to assess purified chaperone activity are also discussed

    Molecular chaperones in biology, medicine and protein biotechnology

    Get PDF
    Molecular chaperones consist of several highly conserved families of proteins, many of which consist of heat shock proteins. The primary function of molecular chaperones is to facilitate the folding or refolding of proteins, and therefore they play an important role in diverse cellular processes including protein synthesis, protein translocation, and the refolding or degradation of proteins after cell stress. Cells are often exposed to different stressors, resulting in protein misfolding and aggregation. It is now well established that the levels of certain molecular chaperones are elevated during stress to provide protection to the cell. The focus of this review is on the impact of molecular chaperones in biology, medicine and protein biotechnology, and thus covers both fundamental and applied aspects of chaperone biology. Attention is paid to the functions and applications of molecular chaperones from bacterial and eukaryotic cells, focusing on the heat shock proteins 90 (Hsp90), 70 (Hsp70) and 40 (Hsp40) classes of chaperones, respectively. The role of these classes of chaperones in human diseases is discussed, as well as the parts played by chaperones produced by the causative agents of malaria and trypanosomiasis. Recent advances have seen the application of chaperones in improving the yields of a particular target protein in recombinant protein production. The prospects for the targeted use of molecular chaperones for the over-production of recombinant proteins is critically reviewed, and current research on these chaperones at Rhodes University is also discussed

    Focal hemosiderin deposits and β-amyloid load in the ADNI cohort

    No full text
    OBJECTIVE: Prevalence and risk factors for focal hemosiderin deposits are important considerations when planning amyloid–modifying trials for treatment and prevention of Alzheimer’s disease (AD). METHODS: Subjects were cognitively normal (n=171), early-mild cognitive impairment (MCI) (n=240), late-MCI (n=111) and AD (n=40) from the Alzheimer’s Disease Neuroimaging Initiative (ADNI). Microhemorrhages and superficial siderosis were assessed at baseline and on all available MRIs at 3, 6 and 12 months. β-amyloid load was assessed with (18)F-florbetapir PET. RESULTS: Prevalence of superficial siderosis was 1% and prevalence of microhemorrhages was 25% increasing with age (p<0.001) and β-amyloid load (p<0.001). Topographic densities of microhemorrhages were highest in the occipital lobes and lowest in the deep/infratentorial regions. A greater number of microhemorrhages at baseline was associated with a greater annualized rate of additional microhemorrhages by last follow-up (rank correlation=0.49;P<0.001). CONCLUSION: Focal hemosiderin deposits are relatively common in the ADNI cohort and are associated with β-amyloid load
    corecore