34 research outputs found
Gene Regulation of Intestinal Porcine Epithelial Cells IPEC-J2 Is Dependent on the Site of Deoxynivalenol Toxicological Action
The intestinal epithelial cell layer represents the border between the luminal and systemic side of the gut. The decision between absorption and exclusion of substances is the quintessential function of the gut and varies along the gut axis. Consequently, potentially toxic substances may reach the basolateral domain of the epithelial cell layer via blood stream. The mycotoxin deoxynivalenol (DON) is a Fusarium derived secondary metabolite known to enter the blood stream and displaying a striking toxicity on the basolateral side of polarised epithelial cell layers in vitro. Here we analysed potential mechanisms of apical and basolateral DON toxicity reflected in the gene expression. We used the jejunum-derived, polarised intestinal porcine epithelial cell line IPEC-J2 as an in vitro cell culture model. Luminal and systemic DON challenge of the epithelial cell layer was mimicked by a DON application from the apical or basolateral compartment of membrane inserts for 72 h. We compared the genome-wide gene expression of untreated and DON-treated IPEC-J2 cells with the GeneChip® Porcine Genome Array of Affymetrix. Low basolateral DON (200 ng/mL) application triggered 10 times more gene transcripts in comparison to the corresponding apical application (2539 versus 267) despite the intactness of the challenged cell layer as measured by transepithelial electrical resistance. Analysis of the regulated genes by bioinformatic resource DAVID identified several groups of biochemical pathways modulated by concentration and orientation of DON application. Selected genes representing pathways of the cellular metabolism, information processing and structural design were analysed in detail by quantitative PCR. Our findings clearly show that apical and basolateral challenge of epithelial cell layers trigger different gene response profiles paralleled with a higher susceptibility towards basolateral challenge. The evaluation of toxicological potentials of mycotoxins should take this difference in gene regulation dependent on route of application into account
Vulnerability of Polarised Intestinal Porcine Epithelial Cells to Mycotoxin Deoxynivalenol Depends on the Route of Application
BACKGROUND AND AIMS: Deoxynivalenol (DON) is a Fusarium derived mycotoxin, often occurring on cereals used for human and animal nutrition. The intestine, as prominent barrier for nutritional toxins, has to handle the mycotoxin from the mucosa protected luminal side (apical exposure), as well as already absorbed toxin, reaching the cells from basolateral side via the blood stream. In the present study, the impact of the direction of DON exposure on epithelial cell behaviour and intestinal barrier integrity was elucidated. METHODS: A non-transformed intestinal porcine epithelial cell line (IPEC-J2), cultured in membrane inserts, serving as a polarised in vitro model to determine the effects of deoxynivalenol (DON) on cellular viability and tight junction integrity. RESULTS: Application of DON in concentrations up to 4000 ng/mL for 24, 48 and 72 hours on the basolateral side of membrane cultured polarised IPEC-J2 cells resulted in a breakdown of the integrity of cell connections measured by transepithelial electrical resistance (TEER), as well as a reduced expression of the tight junction proteins ZO-1 and claudin 3. Epithelial cell number decreased and nuclei size was enlarged after 72 h incubation of 4000 ng/mL DON from basolateral. Although necrosis or caspase 3 mediated apoptosis was not detectable after basolateral DON application, cell cycle analysis revealed a significant increase in DNA fragmentation, decrease in G0/G1 phase and slight increase in G2/M phase after 72 hours incubation with DON 2000 ng/mL. CONCLUSIONS: Severity of impact of the mycotoxin deoxynivalenol on the intestinal epithelial barrier is dependent on route of application. The epithelium appears to be rather resistant towards apical (luminal) DON application whereas the same toxin dose from basolateral severely undermines barrier integrity
Evolutionary History of the Clostridium difficile Pathogenicity Locus
The symptoms of Clostridium difficile infection are caused by toxins expressed from its 19kb pathogenicity locus (PaLoc). Stable integration of the PaLoc is suggested by its single chromosomal location and the clade-specificity of its different genetic variants. However, the PaLoc is variably present, even among closely related strains, and thus resembles a mobile genetic element. Our aim was to explain these apparently conflicting observations by reconstructing the evolutionary history of the PaLoc. Phylogenetic analyses and annotation of the regions spanning the PaLoc were performed using C. difficile population-representative genomes chosen from a collection of 1,693 toxigenic (PaLoc present) and non-toxigenic (PaLoc absent) isolates. Comparison of the core genome and PaLoc phylogenies demonstrated an eventful evolutionary history, with distinct PaLoc variants acquired clade-specifically after divergence. In particular, our data suggest a relatively recent PaLoc acquisition in clade 4. Exchanges and losses of the PaLoc DNA have also occurred, via long homologous recombination events involving flanking chromosomal sequences. The most recent loss event occurred ~30 years ago within a clade 1 genotype. The genetic organisation of the clade 3 PaLoc was unique in containing a stably integrated novel transposon (designated Tn6218), variants of which were found at multiple chromosomal locations. Tn6218 elements were Tn916-related, but non-conjugative, and occasionally contained genes conferring resistance to clinically relevant antibiotics. The evolutionary histories of two contrasting, but clinically important genetic elements were thus characterised: the PaLoc, mobilised rarely via homologous recombination, and Tn6218, mobilised frequently through transposition
The role of innate Immunity and host specificity in Salmonella infection in vitro
Salmonellen sind bedeutende Zoonoseerreger und führen zu schweren
Infektionskrankheiten sowohl beim Menschen als auch beim Tier. In der
vorliegenden Arbeit wurden vergleichende Salmonella-Invasionstudien mit
jeweils zwei bereits etablierten Zellarten (Epithel und Makrophagen) aus je
drei verschiedenen Wirtsystemen (Schwein, Maus, Mensch) durchgeführt. Hierzu
wurden sowohl wirtsadaptierte als auch nichtwirtsadaptierte S. enterica spp.
enterica Serovare (S. Typhimurium, S. Choleraesius, S. Dublin und S.
Enteritidis) genutzt. In der vorliegenden Arbeit wurde mittels
Infektionsversuchen gezeigt, dass die wirtsadaptierten Serovare ein
verlangsamtes Wachstum und eine verminderte Invasivität in dem entsprechenden
Wirtssystem aufwiesen, wie S. Choleraeuis in porcinen Zellen und S.
Typhimurium in murinen Zellen. Darüber hinaus zeigte die PMA-Aktivierung von
Makrophagen einen deutlichen Einfluss auf die Invasivität und die
intrazelluläre Vermehrungsrate der vier Salmonella-Serovare. Ein
infektionsbedingter Zellverlust konnte in dieser Arbeit nach 24h p. i. nur
durch S. Typhimurium Infektion, nicht jedoch bei einer Infektion mit S.
Choleraesuis beobachtet werden. Somit war der Zelluntergang serovarspezifisch.
S. Typhimurium zeigte darüber hinaus in murinen Makrophagen und S.
Choleraesuis in porcinen Zellen das Bildnis ruhender oder sich nur schlecht
vermehrender intrazellulärer Erreger, dies wiederum trägt zur systemischen
Verbreitung des Erregers im Wirt bei. Somit war die intrazelluläre
Ãœberlebensrate der Salmonellen hingegen wirtsspezifisch und nicht
serovarabhängig, dies zeigte sich durch den Vergleich zweier
Untersuchungsmethoden (KbE und GFP). Um diesen Wirt-Erreger-Zusammenhang näher
zu beleuchten, wurden NF-κB-Aktivierungsversuche durchgeführt. Hierbei konnte
nachgewiesen werden, dass die wirtsspezifischen bzw. wirtsadaptierten Serovare
gegenüber den nicht-wirtsadaptierten Erregern eine verminderte
Luciferaseaktivität aufwiesen (S. Choleraesuis in porcinen Zellen und S.
Typhimurium in murinen Zellen). Darüber hinaus wurde nachgewiesen, dass die
bakterielle Zellwand im Vergleich zum LPS ein stärkerer NF-κB-induzierender
Faktor ist und dass S. Typhimurium die zelleigene Immunantwort des Wirtes
minimieren konnte. Diese ermittelten Ergebnisse zeigten, dass
Gastroenteritisauslösende Salmonellen wie die nicht-wirtsadaptierte Serovare
S. Enteritidis oder S. Typhimurium (Mensch, Schwein) über eine schnellere
intrazelluläre Vermehrungsrate und über eine hohe NF-κB-Antwort ihre eigene
Eliminierung durch das Wirtsimmunsytem fördern. Die wiederum Septikämie-
auslösenden Erreger wie S. Choleraesuis (Schwein) und S. Typhimurium (Maus)
führten in den Zellen zu einer geringeren immunologischen Zellantwort und zu
einem geringen intrazellulären Wachstum. Dies ermöglicht den Erregern, die
Immunabwehrmechanismen des Wirtes zeitweise zu umgehen und fördert eine
effektivere Verbreitung der Erreger im Wirtsorganismus. Die Fähigkeit der
Erreger, systemisch zu streuen, ist somit auch direkt verknüpft mit deren
Fähigkeit, in Makrophagen eines bestimmten Wirtes zu überleben. So gesehen
sind mononukleäre Phagozyten eines Wirtes eine essentielle Barriere und
Bestandteil der Wirtspezifität der Salmonella-Serovare. Da der Wirt einen
essentiellen Einfluss auf den Ausgang einer Infektion besitzt, wurden im
zweiten Teil dieser Arbeit die porcinen NOD-Proteine der angeborenen
Immunantwort untersucht, um damit eine Grundlage für weitere wissenschaftliche
Arbeiten auf dem Gebiet der Salmonellenwirtsspezifität zu schaffen. Die
erhobenen Daten zeigten, dass porcines NOD höhere Homologien mit dem humanen
NOD als humanes NOD mit dem murinen NOD besitzen. Darüber hinaus zeigte die
LRR-Domäne Unterschiede zwischen der porcinen NOD1-Sequenz und der humanen
NOD1-Sequenz, dies lässt eine Wirtsspezifität auf der Ebene der PGN-Detektion
vermuten. Darüber hinaus zeigte die LRR-Domäne von NOD zwischen zweier
Schweinerassen SNPs auf, was auf eine verstärkte Variabilität der PRR in der
Schweinepopulation hinweist. Diese Sequenzunterschiede könnten ein bedeutender
Faktor sein, bei der Resistenzentwicklung oder der Empfindlichkeit bestimmter
Rassen auf Krankheiten. Weiterführende Arbeiten zum Zusammenspiel der NOD-
Proteine wird Erkenntnisse nicht nur hinsichtlich der bakteriellen
Wirtszellantwort geben, sondern auch Möglichkeiten des pharmakologischen
Modulierens bieten.Salmonella serovars are important zoonotic pathogens, and can cause severe
infections in both humans and animals. In the study presented here,
comparative in vitro infection studies were performed in two, established cell
types (epithelia and macrophage) derived from three different host species
origins (porcine, murine and human). Both host-adapted and broad host-range S.
enterica spp. enterica serovars (S. Typhimurium, S. Choleraesius, S. Dublin
und S. Enteritidis) were used for the infection studies. In this study, it was
shown that the host-adapted serovars showed reduced growth and invasion of the
pertinent host cells, e.g. S. Choleraesuis in porcine host cells and S.
Typhimurium in murine host cells. In addition, it was shown that phorbol
myristic acid (PMA) activation of macrophage results in large effects on the
invasion and intracellular growth of the four Salmonella serovars. A
Salmonella infection-dependent host cell loss was found to occur 24 hours
post-infection only for S. Typhimurium-infected cells but not for S.
Choleraesuis, indicating that the induction of host cell death was serovar-
specific. Furthermore, the observation that S. Typhimurium and S. Choleraesuis
showed static or poor intracellular growth in murine and porcine host cells,
respectively, coupled with the known systemic proliferation of these serovars
in their respective host species suggests a correlation of this growth
characteristic contributing to systemic infections. That the intracellular
survival of the Salmonella serovars is host-specific and not serovar-dependent
was shown by comparison of two different methodologies (CFU and GFP). In order
to clarify this host-pathogen interaction more closely, studies on the
activation of host cell NF-κB in response to infections were carried out. In
this work it was found that host-restricted or hostadapted serovars showed
reduced lucifearse activation of their respective host cells compared to the
broad host-range serovars. In addition, it was shown that the bacterial cell
wall was a much more potent activator of NF-κB as compared to LPS, and that S.
Typhimurium was capable of minimizing the host cell´s immune response. These
results indicate that gastroenteritis-causing Salmonella such as the non-host-
adapted or broad hostrange serovars S. Enteriditis or S. Typhimurium which
have a more rapid intracellular growth rate and a higher NF-κB response in
human and porcine hosts, contribute to their own elimination through the host
immune system. Serovars causing septicemia such as S. Choleraesuis or S.
Typhimurium in porcine and murine hosts, respectively, showed low
intracellular growth and reduced host cell immune responses. It is suggested
that this latter observation permits the pathogens to evade (at least for a
short time) the host immune response, allowing a more effective dissemination
of the pathogen in the host. However, the ability for the pathogen to spread
systemically is also directly related to its ability to surivive within the
macrophage of a particular host. The mononuclear phagocytes (macrophage) of
the host therefore play an essential role as both barrier and component of the
host-specificity of Salmonella serovars. Since the host also plays an
essential role on the outcome of an infection, in the second half of this
work, the porcine NOD proteins involved in the innate immune response were
also investigated in order to provide a basis for future research on
Salmonella host specificity. The data show that the porcine NOD proteins show
a much higher homology with the human NOD proteins than the human NOD proteins
show to murine NOD proteins. In addition, the LRR domains of the porcine NOD1
protein showed differences compared to the human NOD1, suggesting the
recognition of PGN might play a role in host-specificity. Furthermore, the LRR
domains among two different crosses of swine also showed single nucleotide
polymorphisms (SNPs), possibly indicating variability among the swine
populations. These sequence differences might represent an important factor
involved in resistance or sensitivity to infections. Future work concerning
the interplay between the NOD proteins could provide additional information
not only with regard to the host cell response to bacteria, but also provide
possibilities for pharmacological modulation of this response
Suppression of Acoustic Resonances in BST-Based Bulk-Ceramic Varactors by Addition of Magnesium Borate
This work presents a method for reducing acoustic resonances in ferroelectric barium strontium titanate (BST)-based bulk ceramic varactors, which are capable of operation in high-power matching circuits. Two versions of parallel-plate varactors are manufactured here: one with pure BST and one with 10 vol-% magnesium borate, Mg₃B₂O₆ (MBO). Each varactor includes a 0.85-mm-thick ferroelectric layer. Acoustic resonances that are present in the pure BST varactor are strongly suppressed in the BST-MBO varactor and, hence, the Q-factor is increased over a wide frequency range by the addition of small amounts of a low-dielectric-constant (LDK) MBO. Although the tunability is reduced due to the presence of non-tunable MBO, the increased Q-factor extends the varactor’s availability for low-loss and high-power applications
Western blot of tight junction proteins ZO-1 and claudin-3 in IPEC-J2 cells treated with deoxynivalenol (DON).
<p>Cells were grown on inserts and incubated for 24, 48 or 74 hours with DON (0 or 2000 ng/mL) applied from apical or basolateral side in complete medium. ZO-1 (225 kDa) and claudin-3 (22 kDa) expression was analysed by immunoblotting. The housekeeping protein GAPDH (37 kDa) was used as loading control.</p
Cellular distribution of the tight junction protein claudin-3 (CLDN-3) in IPEC-J2 monolayers treated with deoxynivalenol (DON).
<p>Cells were grown on inserts and incubated for 24, 48 or 74 hours either without DON (upper panel) or with 2000 ng/mL DON applied from apical (middle panel) or basolateral side (lower panel) in complete medium. Monolayers were stained for the tight junction associated protein claudin-3 and nuclei stained with DAPI, then detected by immunofluorescence microscopy. All micrographs were taken under identical exposure time and in the centre of each membrane. Micrographs are representative for 3 separate experiments with similar results. Scale bar  =  50 µm.</p
The systemic inflammatory response to Clostridium difficile infection.
The systemic inflammatory response to Clostridium difficile infection (CDI) is incompletely defined, particularly for patients with severe disease.Analysis of 315 blood samples from 78 inpatients with CDI (cases), 100 inpatients with diarrhea without CDI (inpatient controls), and 137 asymptomatic outpatient controls without CDI was performed. Serum or plasma was obtained from subjects at the time of CDI testing or shortly thereafter. Severe cases had intensive care unit admission, colectomy, or death due to CDI within 30 days after diagnosis. Thirty different circulating inflammatory mediators were quantified using an antibody-linked bead array. Principal component analysis (PCA), multivariate analysis of variance (MANOVA), and logistic regression were used for analysis.Based on MANOVA, cases had a significantly different inflammatory profile from outpatient controls but not from inpatient controls. In logistic regression, only chemokine (C-C motif) ligand 5 (CCL5) levels were associated with cases vs. inpatient controls. Several mediators were associated with cases vs. outpatient controls, especially hepatocyte growth factor, CCL5, and epithelial growth factor (inversely associated). Eight cases were severe and associated with elevations in IL-8, IL-6, and eotaxin.A broad systemic inflammatory response occurs during CDI and severe cases appear to differ from non-severe infections