213 research outputs found

    Affect and Mindfulness as Predictors of Change in Mood Disturbance, Stress Symptoms, and Quality of Life in a Community-Based Yoga Program for Cancer Survivors

    Get PDF
    Little attention has been paid to the psychological determinants by which benefits are accrued via yoga practice in cancer-related clinical settings. Using a longitudinal multilevel modeling approach, associations between affect, mindfulness, and patient-reported mental health outcomes, including mood disturbance, stress symptoms, and health-related quality of life (HRQL), were examined in an existing seven-week yoga program for cancer survivors. Participants (N=66) were assessed before and after the yoga program and at three- and six-month follow-ups. Decreases in mood disturbance and stress symptoms and improvements in HRQL were observed upon program completion. Improvements in mood disturbance and stress symptoms were maintained at the three- and six-month follow-ups. HRQL exhibited further improvement at the three-month follow-up, which was maintained at the six-month follow-up. Improvements in measures of well-being were predicted by initial positive yoga beliefs and concurrently assessed affective and mindfulness predictor variables. Previous yoga experience, affect, mindfulness, and HRQL were related to yoga practice maintenance over the course of the study

    Rapid tablet swelling and disintegration during exposure to brightness-mode ultrasound

    Get PDF
    Controlled tablet disintegration is useful for chemical consistency checks. This study monitored the swelling of 54 analgesia tablets from two different batches, during 13-6-MHz brightness-mode sonication and simultaneous video recording. The tablets were placed on an acoustic reflector inside a container and sonicated from the top. Sonication shortened the displacement half-life by 17%-27%. During tablet swelling, their speed of sound increased linearly, confirming the linearity of this process. Diagnostic ultrasound significantly decreased tablet disintegration times, supporting the ultrasound-microbubble interaction hypothesis.acceptedVersionPeer reviewe

    On the rigidity of four hundred Pickering-stabilised microbubbles

    Get PDF
    This study explores the rigidity of Pickering-stabilised microbubbles subjected to low-amplitude ultrasound. Such microbubbles might be suitable ultrasound contrast agents. Using an adapted Rayleigh-Plesset equation, we modelled the dynamics of microbubbles with a 7.6-N m-1 shell stiffness under 1-MHz, 0.2-MPa sonication. Such dynamics were observed experimentally, too, using high-speed photography. The maximum expansions were agreeing with those predicted for Pickering-stabilised microbubbles. Subjecting microbubbles to multiple time-delayed pulses yielded the same result. We conclude that Pickering-stabilised microbubbles remain very stable at low acoustic amplitudes.acceptedVersionPeer reviewe

    Evidence of Differential HLA Class I-Mediated Viral Evolution in Functional and Accessory/Regulatory Genes of HIV-1

    Get PDF
    Despite the formidable mutational capacity and sequence diversity of HIV-1, evidence suggests that viral evolution in response to specific selective pressures follows generally predictable mutational pathways. Population-based analyses of clinically derived HIV sequences may be used to identify immune escape mutations in viral genes; however, prior attempts to identify such mutations have been complicated by the inability to discriminate active immune selection from virus founder effects. Furthermore, the association between mutations arising under in vivo immune selection and disease progression for highly variable pathogens such as HIV-1 remains incompletely understood. We applied a viral lineage-corrected analytical method to investigate HLA class I-associated sequence imprinting in HIV protease, reverse transcriptase (RT), Vpr, and Nef in a large cohort of chronically infected, antiretrovirally naïve individuals. A total of 478 unique HLA-associated polymorphisms were observed and organized into a series of “escape maps,” which identify known and putative cytotoxic T lymphocyte (CTL) epitopes under selection pressure in vivo. Our data indicate that pathways to immune escape are predictable based on host HLA class I profile, and that epitope anchor residues are not the preferred sites of CTL escape. Results reveal differential contributions of immune imprinting to viral gene diversity, with Nef exhibiting far greater evidence for HLA class I-mediated selection compared to other genes. Moreover, these data reveal a significant, dose-dependent inverse correlation between HLA-associated polymorphisms and HIV disease stage as estimated by CD4+ T cell count. Identification of specific sites and patterns of HLA-associated polymorphisms across HIV protease, RT, Vpr, and Nef illuminates regions of the genes encoding these products under active immune selection pressure in vivo. The high density of HLA-associated polymorphisms in Nef compared to other genes investigated indicates differential HLA class I-driven evolution in different viral genes. The relationship between HLA class I-associated polymorphisms and lower CD4+ cell count suggests that immune escape correlates with disease status, supporting an essential role of maintenance of effective CTL responses in immune control of HIV-1. The design of preventative and therapeutic CTL-based vaccine approaches could incorporate information on predictable escape pathways

    LSST: from Science Drivers to Reference Design and Anticipated Data Products

    Get PDF
    (Abridged) We describe here the most ambitious survey currently planned in the optical, the Large Synoptic Survey Telescope (LSST). A vast array of science will be enabled by a single wide-deep-fast sky survey, and LSST will have unique survey capability in the faint time domain. The LSST design is driven by four main science themes: probing dark energy and dark matter, taking an inventory of the Solar System, exploring the transient optical sky, and mapping the Milky Way. LSST will be a wide-field ground-based system sited at Cerro Pach\'{o}n in northern Chile. The telescope will have an 8.4 m (6.5 m effective) primary mirror, a 9.6 deg2^2 field of view, and a 3.2 Gigapixel camera. The standard observing sequence will consist of pairs of 15-second exposures in a given field, with two such visits in each pointing in a given night. With these repeats, the LSST system is capable of imaging about 10,000 square degrees of sky in a single filter in three nights. The typical 5σ\sigma point-source depth in a single visit in rr will be 24.5\sim 24.5 (AB). The project is in the construction phase and will begin regular survey operations by 2022. The survey area will be contained within 30,000 deg2^2 with δ<+34.5\delta<+34.5^\circ, and will be imaged multiple times in six bands, ugrizyugrizy, covering the wavelength range 320--1050 nm. About 90\% of the observing time will be devoted to a deep-wide-fast survey mode which will uniformly observe a 18,000 deg2^2 region about 800 times (summed over all six bands) during the anticipated 10 years of operations, and yield a coadded map to r27.5r\sim27.5. The remaining 10\% of the observing time will be allocated to projects such as a Very Deep and Fast time domain survey. The goal is to make LSST data products, including a relational database of about 32 trillion observations of 40 billion objects, available to the public and scientists around the world.Comment: 57 pages, 32 color figures, version with high-resolution figures available from https://www.lsst.org/overvie
    corecore