3,956 research outputs found

    Large-Scale Model of the Milky Way: Stellar Kinematics and Microlensing Event Timescale Distribution in the Galactic Bulge

    Get PDF
    We build a stellar-dynamical model of the Milky Way barred bulge and disk, using a newly implemented adaptive particle method. The underlying mass model has been previously shown to match the Galactic near-infrared surface brightness as well as gas-kinematic observations. Here we show that the new stellar-dynamical model also matches the observed stellar kinematics in several bulge fields, and that its distribution of microlensing event timescales reproduces the observed timescale distribution of the {\it MACHO} experiment with a reasonable stellar mass function. The model is therefore an excellent basis for further studies of the Milky Way. We also predict the observational consequences of this mass function for parallax shifted events.Comment: 13 pages, 3 figures. Accepted to ApJ

    Gradient Representations and Affine Structures in AE(n)

    Full text link
    We study the indefinite Kac-Moody algebras AE(n), arising in the reduction of Einstein's theory from (n+1) space-time dimensions to one (time) dimension, and their distinguished maximal regular subalgebras sl(n) and affine A_{n-2}^{(1)}. The interplay between these two subalgebras is used, for n=3, to determine the commutation relations of the `gradient generators' within AE(3). The low level truncation of the geodesic sigma-model over the coset space AE(n)/K(AE(n)) is shown to map to a suitably truncated version of the SL(n)/SO(n) non-linear sigma-model resulting from the reduction Einstein's equations in (n+1) dimensions to (1+1) dimensions. A further truncation to diagonal solutions can be exploited to define a one-to-one correspondence between such solutions, and null geodesic trajectories on the infinite-dimensional coset space H/K(H), where H is the (extended) Heisenberg group, and K(H) its maximal compact subgroup. We clarify the relation between H and the corresponding subgroup of the Geroch group.Comment: 43 page

    Harmonic entanglement with second-order non-linearity

    Get PDF
    We investigate the second-order non-linear interaction as a means to generate entanglement between fields of differing wavelengths. And show that perfect entanglement can, in principle, be produced between the fundamental and second harmonic fields in these processes. Neither pure second harmonic generation, nor parametric oscillation optimally produce entanglement, such optimal entanglement is rather produced by an intermediate process. An experimental demonstration of these predictions should be imminently feasible.Comment: 4 pages, 4 figure

    Vacua of N=10 three dimensional gauged supergravity

    Full text link
    We study scalar potentials and the corresponding vacua of N=10 three dimensional gauged supergravity. The theory contains 32 scalar fields parametrizing the exceptional coset space E6(14)SO(10)×U(1)\frac{E_{6(-14)}}{SO(10)\times U(1)}. The admissible gauge groups considered in this work involve both compact and non-compact gauge groups which are maximal subgroups of SO(10)×U(1)SO(10)\times U(1) and E6(14)E_{6(-14)}, respectively. These gauge groups are given by SO(p)×SO(10p)×U(1)SO(p)\times SO(10-p)\times U(1) for p=6,...10p=6,...10, SO(5)×SO(5)SO(5)\times SO(5), SU(4,2)×SU(2)SU(4,2)\times SU(2), G2(14)×SU(2,1)G_{2(-14)}\times SU(2,1) and F4(20)F_{4(-20)}. We find many AdS3_3 critical points with various unbroken gauge symmetries. The relevant background isometries associated to the maximally supersymmetric critical points at which all scalars vanish are also given. These correspond to the superconformal symmetries of the dual conformal field theories in two dimensions.Comment: 37 pages no figures, typos corrected and a little change in the forma

    An improved estimate of black hole entropy in the quantum geometry approach

    Get PDF
    A proper counting of states for black holes in the quantum geometry approach shows that the dominant configuration for spins are distributions that include spins exceeding one-half at the punctures. This raises the value of the Immirzi parameter and the black hole entropy. However, the coefficient of the logarithmic correction remains -1/2 as before.Comment: 5 pages, LaTeX; references and remarks adde

    The influence of bond-rigidity and cluster diffusion on the self-diffusion of hard spheres with square-well interaction

    Get PDF
    Hard spheres interacting through a square-well potential were simulated using two different methods: Brownian Cluster Dynamics (BCD) and Event Driven Brownian Dynamics (EDBD). The structure of the equilibrium states obtained by both methods were compared and found to be almost the identical. Self diffusion coefficients (DD) were determined as a function of the interaction strength. The same values were found using BCD or EDBD. Contrary the EDBD, BCD allows one to study the effect of bond rigidity and hydrodynamic interaction within the clusters. When the bonds are flexible the effect of attraction on DD is relatively weak compared to systems with rigid bonds. DD increases first with increasing attraction strength, and then decreases for stronger interaction. Introducing intra-cluster hydrodynamic interaction weakly increases DD for a given interaction strength. Introducing bond rigidity causes a strong decrease of DD which no longer shows a maximum as function of the attraction strength

    P-values for high-dimensional regression

    Full text link
    Assigning significance in high-dimensional regression is challenging. Most computationally efficient selection algorithms cannot guard against inclusion of noise variables. Asymptotically valid p-values are not available. An exception is a recent proposal by Wasserman and Roeder (2008) which splits the data into two parts. The number of variables is then reduced to a manageable size using the first split, while classical variable selection techniques can be applied to the remaining variables, using the data from the second split. This yields asymptotic error control under minimal conditions. It involves, however, a one-time random split of the data. Results are sensitive to this arbitrary choice: it amounts to a `p-value lottery' and makes it difficult to reproduce results. Here, we show that inference across multiple random splits can be aggregated, while keeping asymptotic control over the inclusion of noise variables. We show that the resulting p-values can be used for control of both family-wise error (FWER) and false discovery rate (FDR). In addition, the proposed aggregation is shown to improve power while reducing the number of falsely selected variables substantially.Comment: 25 pages, 4 figure
    corecore