g
-

metadata, citation and similar papers at core.ac.uk brought to you by 25 C(

provided by Elsevier - Publisher Conn

; SGIENCE@DIHEGT’
@ O PHYSICS LETTERS B

e F IR oSS
ELSEVIER Physics Letters B 616 (2005) 114-117

www.elsevier.com/locate/physletb

An improved estimate of black hole entropy in
the quantum geometry approach

A. Ghosh, P. Mitra

@ Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Calcutta 700064, India
Received 14 April 2005; accepted 3 May 2005

Editor: L. Alvarez-Gaumé

Abstract

A proper counting of states for black holes in the quantum geometry approach shows that the dominant configuration for
spins are distributions that include spins exceeding one-half at the punctures. This raises the value of the Immirzi parameter and
the black hole entropy. However, the coefficient of the logarithmic correction remdif as before.

0 2005 Elsevier B.V. Open access under CC BY license,

The quantum geometry approach to a quantum the- the entropy is somewhat higher by taking spins higher
ory of gravity is reasonably well established now: than one-halfinto account, though the logarithmic cor-
seg[1] for reviews. In[2] a general framework for the  rection is unaffected in this calculation. In the present
calculation of black hole entropy in this approach was Letter we investigate the modification of the lower
proposed. A lower bound for the entropy was worked bound of[3] in view of this development and are led
out on the basis of the association of spin one-half to to a further increase in the leading term.
eachpunctureand found to be proportional to the area Let a generic configuration hawg punctures with
of the horizon. The proportionality constant involves spinj, j =1/2,1,3/2,2,.... Note that
what is known as the Immirzi parameter, which can
be chosen so that the entropy becomes a quarter of thezzsj JjG+D=A4, (1)
area. ;

Recently, this lower bound was sharpened3h
to include a logarithmic correction-3InA. Subse- ~ whereA is the horizon area in units where #02 =1,
quently, it was found4] that the dominant term in ¥ being the Immirzi parameter angp the Planck

length. Following[2], we shall treat the punctures as
distinguishable, see alg§b]. We shall count states of
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tween this procedure and the calculation carried out
in [4] will be commented on later.

If we ignore thezero spin projection constraint
(3>_m =0, the sum extending over all punctures) ini-
tially, the total number of states is given by

_ Qs
Hij!

where one has to sum over all non-negatiyeonsis-
tent with the given value ofA. We will estimate the
sum by maximizing the above expression with respect
to the variables; subject to a fixed value of.

Using Stirling’s formula, we see that
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Hence,

SINN = "6s;

J
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k

so that with some Lagrange multipligrto implement
the area constraint, we can set

INR2j+1) —Ins; +In> " si =2/j(j +1)=0. (5)
k
Thus,

sj=Qj+Dexg—2/jiG+D]D sk
k

(6)

Summing overj, we obtain the relation

Z(z j+Dexg—Av/jiG+D]=1, (7)
j

which determineg >~ 1.72. It may be mentioned that
(7) was noted as a mathematical possibility [#],
and was derived with a somewhat different motivation
in [6].

Substituting the expression for one easily gets
the entropy to be

S=InN=21A/2. ®)
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may raise this value while the imposition of the zero
projection constraint is expected to lower it slightly.
The higher spins clearly raise the leading term, as
in [4], but our expression is even larger than thgtpf
The difference arises from the fact that we have al-
lowed all valuesn = —j, ..., j for all j, whereag4]
did not distinguish states with the same values difut
different;. Itis interesting to notice that their equation

> 2exd-7ViG+D]=1 9)
J

which they got instead of7), would have been ob-
tained by us if we had restrictedd = +; for each;.
This shows that although they wanted to count states
characterized by only the quantum numberand sat-
isfying 2>~ /Im|(Im[+ 1) < A, allowing for |m| < j,
their result is the same as though they were interested
only in states withjm| = j and areaqualto A. States
with lower values ofm| appear to be negligibly fewer
in comparison.

Note further that if one allows: to have all its
2j + 1 values for eachy, their first recursion relation
(with the zero projection constraint ignored) would get
altered to

NA) =Y 2j+DN(A-2/j(+1D)
j
+VA2Z4+1, (10)

which is satisfied by our estimabé(A) = exp(AA/2)
with A satisfying(7) above. Our expression for the en-
tropy thus agrees with the solution obtained from the
modifiedrecursion relation when the zero projection
constraint is ignored.

We shall now impose the constraint of zero angu-
lar momentum projection. The number of configura-
tions will be reduced somewhat, and a correction is
expected to emerge. Le} ,, punctures carry spiri
and projectiorn, i.e.,s; = Y, s; . Since at each
puncture(j, m) assigns a unique state the total num-
ber of statesV equals the number of ways ands;
can be distributed among themselves,

_ (stj)! Sj! _ (Zj,msjsm)!

N = =
]_[jsj! ; [L8)m! ]_[jﬁms],m!

. (1

This means that the Immirzi parameter has to be set subject to the constraintgj,m ms;,n =0 and (1).

atA/(2mr) >~ 0.274. Note that the summation over

A lower bound is obtained by replacing,, for each
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m by s;/(2j + 1) for the corresponding. This max- Let us now estimate the entropy, which as men-
imizes the number of combinations!/ [, s;.m! for tioned above is expected to be higher than the above
eachj and also ensures zero total spin projection for bound because of summation over different configura-
eachj, hence for the sum. In Stirling’s approximation, tions. In view of the zero spin projection constraint, the
the main departure fron2;j + 1)*/ occurs as the de-  number of configurations may be written by explicitly

nominator contains a factgs;/(2j + 1)/*¥/2, lead- ~ summing oves; ,, for each; as (sed3])
ing to a correction-(j +1/2) In[s; /(2j + 1)] (cf. [3])
iNINN.Ass;/(2j +1) x Aexpg—A/j(j + D1, this (Z s/)

correction can be expressed as corr =

ot [ T[S esonso]

Y [InA-1/7G+D]G +1/2), (12) e (18)
j

This can be rewritten as

which appears to be divergent. This happens because o
) dw

a}ll Ly 'have been as;umgd to be large, although for IargeN = / 20 N (w) (19)
Jj» §; inthe expression given above goes to zero. So we
restrict the sum tg for whichs; is greater than unity. —2n
Taking the largesj to ben/2, we see that where
exg —Ay/ 2)/41A~1, 13 (25!

[:{ nn+2)/ ] (13) N(w) = =% Z] J H[ZGX[le a)):| (20)
so that 1_[ 5! j
n>~2InA/A. (14) To maximize Neorr, We regards; as functionss; (w)

subject to the area constraint and maxintiz@v). The
result is a simple modification of the one obtained

> j=n(m+1)/4~(nA)?/22 (15) above,
J N (@) = exp(A(@)A/2), 1)

Now

Therefore the It piece yields a(ln A)3 correction. o
The piece—A/7(j + 1) also has to be taken into ac- Wherex(w) satisfies
count, using the sum

Zj22n3/12:2(|n A)S/(S)\.S). (16) 1= ZGXK{ AMo)j(j+1 ] Z expiom). (22)
j m==J

The total correction comes to(In A)23/(312): the to-

tal entropy is bounded by the contribution of these

configurations:

This equation differs from that 4#] in m going over
—J,..., j, whereas theim goes overt; as before.
The modified recursion relation fa¥ (A, p), which is
the number of configurations satisfying the area con-

S>1A/2—(In A)3/(3A2). (17) straint(1) and the relatiorp _m = p, is

This is our new lower bound.
It must be noted that this bound has been derived N(A, p) = Z Z A -2/j(+D,p —m)
by assuming a specific distribution of spins and spin j om=—j
projections to give the largest number of combina- o I
tions. Summing over different; is expected to in- +9(A 2V 1pldpl +1))’ (23)
crease the number of configurations. Note that there and gives rise to the above equation fdw).
also are additional non-leading terms in the expres- For w = 0, (22) resembleq7), so A(0) = A. This
sions used above which have been neglected, but thesgields the dominant contribution eipA/2) seen
are much smaller in magnitude thén A)2 and yield above. For smalb, A(w) falls quadratically, and the
(In A)? and InA pieces. integral becomes a Gaussian, which is readily seen to
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be proportional tod ~1/2 by appropriate scaling. Thus,
exp(AA/Z)]

Al/2
This is exactly as ifj3,4], indicating that theln A)3,
(In A)2 terms do not survive when summed over con-
figurations.

One can see this directly by approximating the
sums over configurations (i.e., sums ovey,) by in-
tegrals: variation ofN in (11) with s;,, leads to a
factor er—(Ssj,m)z/Zsj,m]. Denominator factors of
(27s,m)Y/? coming from Stirling’s approximation are
cancelled by similar factors in the numerator coming
from this Gaussian integration:

Scorr = In Neorr ~ |n|:

1
=A4/2= S InA. (24)

((Ssj,m)z

/ d(8sjm) exp[— >

:| = (277:Sj,m)l/2‘ (25)

J.m

Eachs; ,, is proportional taA. The area constraint and
the spin projection constraint, which may be thought
of as reducing the number of summations, reduce the
number of factors ok/A by two. But the numera-
tor too has such a factor through s)*/2. An overall
factor 1/+/A is thus left, as above, leading to the loga-
rithmic correction with a coefficient1/2.

In conclusion, we have estimated the entropy of a
black hole in the quantum geometry approach by al-
lowing spins of all non-zero values at different punc-
tures and regarding both andm as relevant quan-
tum numbers. It was noted {i2] that the entropy in
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is different from theirs in the leading order, although,
somewhat surprisingly, the coefficient of the logarith-
mic term remains the same. The reason whyas at
times been disregarded in the state counting is that this
quantum number appears only in the volume Hilbert
space anahot in the surface Hilbert spad@], while

it is the surface Hilbert space which is considered to
be the space of quantum states of the isolated hori-
zon. However, although the area of a classical isolated
horizon is defined intrinsically on the surface, the area
operator of a quantum isolated horizon is defined only
to act on the volume Hilbert space. In fact, the area
of the horizon is determined by the ‘volume’ quantum
numbers;j. So, in our view,j cannot be regarded as a
hidden quantum number in characterizing the states of
a quantum isolated horizon. In the end, then, the rea-
son for the difference in our results froM] is due

to this difference in the definition of black hole states.
Which definition is more appropriate may be fixed ei-
ther by making an independent estimate of the Immirzi
parameter or by performing some other semiclassical
calculations from quantum isolated horizons.
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