
b

ation for
meter and

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 
Physics Letters B 616 (2005) 114–117

www.elsevier.com/locate/physlet

An improved estimate of black hole entropy in
the quantum geometry approach

A. Ghosh, P. Mitra

a Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Calcutta 700064, India

Received 14 April 2005; accepted 3 May 2005

Editor: L. Alvarez-Gaumé

Abstract

A proper counting of states for black holes in the quantum geometry approach shows that the dominant configur
spins are distributions that include spins exceeding one-half at the punctures. This raises the value of the Immirzi para
the black hole entropy. However, the coefficient of the logarithmic correction remains−1/2 as before.
 2005 Elsevier B.V. Open access under CC BY license.
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The quantum geometry approach to a quantum
ory of gravity is reasonably well established no
see[1] for reviews. In[2] a general framework for th
calculation of black hole entropy in this approach w
proposed. A lower bound for the entropy was work
out on the basis of the association of spin one-hal
eachpunctureand found to be proportional to the ar
of the horizon. The proportionality constant involv
what is known as the Immirzi parameter, which c
be chosen so that the entropy becomes a quarter o
area.

Recently, this lower bound was sharpened in[3]
to include a logarithmic correction−1

2 lnA. Subse-
quently, it was found[4] that the dominant term in
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the entropy is somewhat higher by taking spins hig
than one-half into account, though the logarithmic c
rection is unaffected in this calculation. In the pres
Letter we investigate the modification of the low
bound of[3] in view of this development and are le
to a further increase in the leading term.

Let a generic configuration havesj punctures with
spinj , j = 1/2,1,3/2,2, . . . . Note that

(1)2
∑
j

sj
√

j (j + 1) = A,

whereA is the horizon area in units where 4πγ �2
P = 1,

γ being the Immirzi parameter and�P the Planck
length. Following[2], we shall treat the punctures
distinguishable, see also[5]. We shall count states o
the physical Hilbert space considering bothj and its
projectionm as quantum numbers. The difference b
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tween this procedure and the calculation carried
in [4] will be commented on later.

If we ignore thezero spin projection constrain
(
∑

m = 0, the sum extending over all punctures) i
tially, the total number of states is given by

(2)N = (
∑

j sj )!∏
j sj !

∏
j

(2j + 1)sj ,

where one has to sum over all non-negativesj consis-
tent with the given value ofA. We will estimate the
sum by maximizing the above expression with resp
to the variablessj subject to a fixed value ofA.

Using Stirling’s formula, we see that

lnN =
∑
j

sj
[
ln(2j + 1) − ln sj

]

(3)+
(∑

j

sj

)
ln

(∑
j

sj

)
.

Hence,

(4)δ lnN =
∑
j

δsj

[
ln(2j + 1) − ln sj + ln

∑
k

sk

]
,

so that with some Lagrange multiplierλ to implement
the area constraint, we can set

(5)ln(2j + 1) − ln sj + ln
∑

k

sk − λ
√

j (j + 1) = 0.

Thus,

(6)sj = (2j + 1)exp
[−λ

√
j (j + 1)

]∑
k

sk.

Summing overj , we obtain the relation

(7)
∑
j

(2j + 1)exp
[−λ

√
j (j + 1)

] = 1,

which determinesλ � 1.72. It may be mentioned tha
(7) was noted as a mathematical possibility in[4],
and was derived with a somewhat different motivat
in [6].

Substituting the expression forsj one easily gets
the entropy to be

(8)S = lnN = λA/2.

This means that the Immirzi parameter has to be
at λ/(2π) � 0.274. Note that the summation overs
j
may raise this value while the imposition of the ze
projection constraint is expected to lower it slightly.

The higher spins clearly raise the leading term
in [4], but our expression is even larger than that of[4].
The difference arises from the fact that we have
lowed all valuesm = −j, . . . , j for all j , whereas[4]
did not distinguish states with the same values ofm but
differentj . It is interesting to notice that their equatio

(9)
∑
j

2 exp
[−γ̃

√
j (j + 1)

] = 1,

which they got instead of(7), would have been ob
tained by us if we had restrictedm = ±j for eachj .
This shows that although they wanted to count sta
characterized by only the quantum numbersm and sat-
isfying 2

∑√|m|(|m| + 1) � A, allowing for|m| � j ,
their result is the same as though they were intere
only in states with|m| = j and areaequalto A. States
with lower values of|m| appear to be negligibly fewe
in comparison.

Note further that if one allowsm to have all its
2j + 1 values for eachj , their first recursion relation
(with the zero projection constraint ignored) would g
altered to

N(A) =
∑
j

(2j + 1)N
(
A − 2

√
j (j + 1)

)

(10)+
√

A2 + 1,

which is satisfied by our estimateN(A) = exp(λA/2)

with λ satisfying(7) above. Our expression for the e
tropy thus agrees with the solution obtained from
modifiedrecursion relation when the zero projecti
constraint is ignored.

We shall now impose the constraint of zero an
lar momentum projection. The number of configu
tions will be reduced somewhat, and a correction
expected to emerge. Letsj,m punctures carry spinj
and projectionm, i.e., sj = ∑

m sj,m. Since at each
puncture(j,m) assigns a unique state the total nu
ber of statesN equals the number of wayssj andsj,m
can be distributed among themselves,

(11)N = (
∑

j sj )!∏
j sj !

∏
j

sj !∏
m sj,m! = (

∑
j,m sj,m)!∏
j,m sj,m! ,

subject to the constraints
∑

j,m msj,m = 0 and (1).
A lower bound is obtained by replacings for each
j,m
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m by sj /(2j + 1) for the correspondingj . This max-
imizes the number of combinationssj !/∏

m sj,m! for
eachj and also ensures zero total spin projection
eachj , hence for the sum. In Stirling’s approximatio
the main departure from(2j + 1)sj occurs as the de
nominator contains a factor[sj /(2j + 1)]j+1/2, lead-
ing to a correction−(j +1/2) ln[sj /(2j +1)] (cf. [3])
in lnN . As sj /(2j + 1) ∝ Aexp[−λ

√
j (j + 1) ], this

correction can be expressed as

(12)−
∑
j

[
lnA − λ

√
j (j + 1)

]
(j + 1/2),

which appears to be divergent. This happens bec
all sj have been assumed to be large, although for la
j , sj in the expression given above goes to zero. So
restrict the sum toj for which sj is greater than unity
Taking the largestj to ben/2, we see that

(13)exp
[−λ

√
n(n + 2)/4

]
A � 1,

so that

(14)n � 2 lnA/λ.

Now

(15)
∑
j

j = n(n + 1)/4� (lnA)2/λ2.

Therefore the lnA piece yields a(lnA)3 correction.
The piece−λ

√
j (j + 1) also has to be taken into a

count, using the sum

(16)
∑
j

j2 � n3/12� 2(lnA)3/
(
3λ3).

The total correction comes to−(lnA)3/(3λ2): the to-
tal entropy is bounded by the contribution of the
configurations:

(17)S � λA/2− (lnA)3/
(
3λ2).

This is our new lower bound.
It must be noted that this bound has been deri

by assuming a specific distribution of spins and s
projections to give the largest number of combin
tions. Summing over differentsj is expected to in-
crease the number of configurations. Note that th
also are additional non-leading terms in the expr
sions used above which have been neglected, but t
are much smaller in magnitude than(lnA)3 and yield
(lnA)2 and lnA pieces.
e

Let us now estimate the entropy, which as m
tioned above is expected to be higher than the ab
bound because of summation over different configu
tions. In view of the zero spin projection constraint, t
number of configurations may be written by explici
summing oversj,m for eachj as (see[3])

(18)

Ncorr =
(
∑

j sj )!∏
j sj !

2π∫
−2π

dω

4π

∏
j

[∑
mj

exp(imjω)

]sj

.

This can be rewritten as

(19)Ncorr =
2π∫

−2π

dω

4π
N(ω),

where

(20)N(ω) = (
∑

j sj )!∏
j sj !

∏
j

[∑
mj

exp(imjω)

]sj

.

To maximizeNcorr, we regardsj as functionssj (ω)

subject to the area constraint and maximizeN(ω). The
result is a simple modification of the one obtain
above,

(21)N(ω) = exp
(
λ(ω)A/2

)
,

whereλ(ω) satisfies

(22)1=
∑
j

exp
[−λ(ω)

√
j (j + 1)

] j∑
m=−j

exp(iωm).

This equation differs from that of[4] in m going over
−j, . . . , j , whereas theirm goes over±j as before.
The modified recursion relation forN(A,p), which is
the number of configurations satisfying the area c
straint(1) and the relation

∑
m = p, is

N(A,p) =
∑
j

j∑
m=−j

N
(
A − 2

√
j (j + 1),p − m

)

(23)+ θ
(
A − 2

√|p|(|p| + 1)
)
,

and gives rise to the above equation forλ(ω).
For ω = 0, (22) resembles(7), so λ(0) = λ. This

yields the dominant contribution exp(λA/2) seen
above. For smallω, λ(ω) falls quadratically, and theω
integral becomes a Gaussian, which is readily see
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04)
be proportional toA−1/2 by appropriate scaling. Thu

Scorr = lnNcorr ∼ ln

[
exp(λA/2)

A1/2

]

(24)= λA/2− 1

2
lnA.

This is exactly as in[3,4], indicating that the(lnA)3,
(lnA)2 terms do not survive when summed over co
figurations.

One can see this directly by approximating t
sums over configurations (i.e., sums oversj,m) by in-
tegrals: variation ofN in (11) with sj,m leads to a
factor exp[−(δsj,m)2/2sj,m]. Denominator factors o
(2πsj,m)1/2 coming from Stirling’s approximation ar
cancelled by similar factors in the numerator com
from this Gaussian integration:

(25)

∞∫
−∞

d(δsj,m)exp

[
− (δsj,m)2

2sj,m

]
= (2πsj,m)1/2.

Eachsj,m is proportional toA. The area constraint an
the spin projection constraint, which may be thou
of as reducing the number of summations, reduce
number of factors of

√
A by two. But the numera

tor too has such a factor through(
∑

s)1/2. An overall
factor 1/

√
A is thus left, as above, leading to the log

rithmic correction with a coefficient−1/2.
In conclusion, we have estimated the entropy o

black hole in the quantum geometry approach by
lowing spins of all non-zero values at different pun
tures and regarding bothj and m as relevant quan
tum numbers. It was noted in[2] that the entropy in
the leading order is the same whether one consi
j as relevant or not, with spin one-half assumed
yield the counting. However, the dominant config
ration, with the largest contribution to the number
states, contains spins higher than one-half, so tha
assumption made in[2] has to be relaxed. The coun
ing done in[4] treatedj as irrelevant and our resu
is different from theirs in the leading order, althoug
somewhat surprisingly, the coefficient of the logari
mic term remains the same. The reason whyj has at
times been disregarded in the state counting is that
quantum number appears only in the volume Hilb
space andnot in the surface Hilbert space[2], while
it is the surface Hilbert space which is considered
be the space of quantum states of the isolated h
zon. However, although the area of a classical isola
horizon is defined intrinsically on the surface, the a
operator of a quantum isolated horizon is defined o
to act on the volume Hilbert space. In fact, the a
of the horizon is determined by the ‘volume’ quantu
numbersj . So, in our view,j cannot be regarded as
hidden quantum number in characterizing the state
a quantum isolated horizon. In the end, then, the
son for the difference in our results from[4] is due
to this difference in the definition of black hole stat
Which definition is more appropriate may be fixed
ther by making an independent estimate of the Imm
parameter or by performing some other semiclass
calculations from quantum isolated horizons.
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